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Abstract
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1 Introduction

Intuitively more education is associated with less inequality, provided that access to education

contributes to equal opportunities. Neverteless, the empirical evidence suggests otherwise:

there is a positive association between average level of education and wage inequality, a phe-

nomenom labeled as the ‘paradox of progress’ by Bourguignon et al. (2004). Recent evidence

on this effect can be found in Beccaria et al. (2015) and Ferreira et al. (2016), among others.

There are two alternative hypothesis that may help rationalize this paradox. First, the

‘Mincer equation’ that links (log) wages with its determinants is found to be positive and

convex with respect to education, hence higher levels of the latter are associated with higher

wage inequality. Tinberger (1972) and Sattinger (1993) are seminal references that may help

explain why this convexity occurs, in a labor market that has a differential rent structure,

and education serves as a signal to match workers to better jobs. In turn this depends on

the relative scarcity of capital stock across sectors. Thus the overall result is that a more

equal distribution of education increases wage inequality due to the convexity of the returns

to education (Legovini et al. 2005). Empirical papers that explore this line of research are

Battistón, Garćıa Domench and Gasparini (2014), among others.

Second, and independently of convexities, the paradox of progress may arise due to individ-

ual heterogeneity in returns to schooling. Becker and Chiswick (1966) introduce the idea that

human capital depends on individual unobservable characteristics, hence returns to education

are heterogeneous. And when positively associated with the conditional distribution of earn-

ings, relatively richer individuals get more from education, hence increased levels of education

are associated with a higher mean wage and more inequality. Empirical contributions on this

line of research are based on quantile regressions, and include Buchinsky (1994, 2001), Martins

and Pereira (2004), Staneva et al. (2010), Ariza and Montes-Rojas (2019), among others.

Each model implies a theoretical interpretation on the behavior of the labor market, hence

it is important to isolate the relative contribution of each of these two factors behind the

increased levels of inequality associated with more education. This paper proposes an econo-

metric framework that encompasses these two models and that leads to a natural way to quan-

tify the absolute and relative contribution to inequality of convexities and heterogeneities. A

functional framework is proposed using mean and quantile regression models to estimate the

relative contribution of each hypothesis. The proposed method uses functional derivatives as

in Firpo et al. (2009) applied to the variance of the logarithms as the indicator of inequality.

The method is implemented for the case of Argentina, which offers a relevant empirical

case of significant due to the large changes in wage inequality observed in last 30 years. The

obtained results show that at the beginning of the 1990’s both unequalizing aspects had the

same relevance on the wage distribution. However, convexity of the mean returns became more

relevant in 1998 and grows gradually in the following decade and a half, when the effect of

heterogeneity became statistically irrelevant around 2015.
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2 Mincer equations and the paradox of progress

The Mincer equation (Mincer, 1974) is a widely used hedonic price model that postulates that

what the market pays for a good or factor depends on its observable characteristics. In the

labor market, wages depend on time invested to acquire knowledge to apply tasks that require

different degrees of complexity. The ‘paradox of progress’ relates to the empirical finding that

higher levels of education are related with higher mean wages and, counterintuitively, with

more inequality. As advanced in the Introduction, there are two driving forces behind this

phenomenon.

2.1 Convexity of the Mincer equation with respect to education

The first hypothesis that rationalizes more education with higher inequality states that, in

a partial equilibrium framework, the convexity of the returns to education in the Mincer

equation is the cause of the unequalizing effect of increasing the level of education. Figure 1

(a) illustrates this idea. A given increment in education (A) generates a higher effect for higher

levels of education (C) than for lower levels of education (B). The convexity of the function

implies that C > B.

A seminal theoretical explanation is given by Satinger (1993). The curvature of the wage

curve depends on a labor market where there are differential rents and workers self-select

into different occupations according to their skills. Years of schooling operate as a signalling

mechanism about those skills. Firms have heterogeneous capital stocks and demand those

skills. The matching is done by assuming that more capital is associated with higher skills

requirements. In equilibrium, there is a positive association between wages and education and

the functional form between these depends on the distribution of skills and capital stock. If

capital has more dispersion than skills, then there is relative scarcity of high skilled workers.

As a result, the market pays them relatively more vis-à-vis low skilled workers. The same

model allows for the possibility of an increasing but concave function.

The convexity of Mincer equations with respect to education is a common empirical fea-

ture. The procedure to study this effect is by simulations (mean based) Mincer equations

estimated with household surveys, assigning one additional year of education uniformly across

the entire population. These models typically assume homogeneous (and parametric) returns

to schooling in a non-linear fashion to allow for convexities, and then the mean effects to the

entire population. Bourgignon, Ferreira and Lustig (2005) and Battistón, Garćıa Domench and

Gasparini (2014) are examples of this line of research, whose results provide strong evidence of

the convex relation between (log) earnings and education, that may help explain the paradox

of progress.
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Figure 1: Mincer equations - Distributional effects of education

(a) Convexity (b) Heterogeneity

2.2 Heterogeneity in returns to education

The second line of research focuses on the role of unobservable factors interacting with ed-

ucation in the determination of wages. Becker and Chiswick (1966) present a model where

each individual has her own human capital, and returns to education are individual specific.

Thus wage dispersion corresponds to differences in unobservable factors (like, for example,

intelligence or family background) conditional on the same observable variables. When these

factors complement with education in the determination of wages, higher level of education

lead to higher returns for individuals up in the conditional distribution of wages. For example,

for a given level of education, individuals with better unobserved family background benefit

more from education than those with worse conditions. Concretely, in such setup, education

has a positive in impact on the mean wage and also in its conditional variance which, in turns,

increases the (unconditional) wage inequality.

Mean based models do not capture these distributional effects of an increment in education.

Consider the example of Figure 1 (b). There are four different wage curves, one for each of

four specific quantiles of the conditional distribution of wages. The fact that the slopes of

these curves is increasing illustrates the idea that individuals up in the conditional distribution

(for example, with better family background) face higher returns to education. The wage

gap individual with education A D − C, smaller than that of individual with education set

a B level of education, F − E. Hence, more education leads to more conditional, ‘within’

inequality, that eventually translates into more unconditional wage dispersion. Buchinsky

(1994, 2001), Martins and Pereira (2004), Staneva et al. (2010), among many others, provide

strong evidence of this behavior, where wage returns are increasing along quantiles and the
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wage gap is increasing in education.

As suggested previously, it is not obvious that the increasing effect of education on con-

ditional inequality translates into a higher unconditional effect. Different solutions for this

obstacle use micro simulations after the estimation of quantile regression models, as in Autor,

Katz and Kearney (2005), Machado and Mata (2005), Melly (2005), Montes-Rojas, Siga and

Mainali (2017), among others. FINDINGS?

An alternative approach is to handle unconditional effects directly, as in the recentered

influence function (RIF) regression method of Firpo, Fortin and Lemieux (2009,2018), that

leads to ‘unconditional’ quantile regressions.

In any case, in their current state, mean models focus on measuring the contribution of

convexities, and their quantile regression counterpart on that of heterogeneities. In the next

section we propose a modeling strategy that encompasses both ideas and leads to a natural

way to quantify the relative importance of each of the factors behind the paradox of progress.

3 A decomposition approach for the paradox of progress

In this section we present the methodology to decompose the two potential effects driving. It

is based on a simple re-parameterization of the quantile regression model using cross-sectional

data, based on Autor, Katz and Kearney (2005) model. We further assume the exogene-

ity of the covariates (and in particular schooling). The proposed method can be used with

instrumental variables if available to tackle endogeneity as well.

Following the empirical literature we consider only partial equilibrium effects, which means

that changes in the composition of education do not affect factor prices. This is the same

framework of Firpo et al. (2009) where the conditional distribution can be used together with

changes in covariates to study the unconditional wage distribution.

3.1 Population model

Consider that (log) wages are represented by the random coefficient characterization of quantile

regressions (QR), as in Koenker and Xiao (2006) and Montes-Rojas et al. (2017))

W = X ′α(U). (1)

where X is a vector of observable attributes (education, experience, gender, etc.) and U |x is a

random variable with uniform distribution given X, which represents the effect of unobservable

components. The ‘index’ U represents the ranking of individuals distribution of wages condi-

tional on X. 1 This ranking is determined by the unobservable components that explain wage

heterogeneity (ability, inteligence, luck, etc.). Therefore, the functional form of α(.) depends

1Using U as a uniform random variable is an application of the inverse transformation method to represent
random variables by their quantiles. It requires that F (w|x) is a continuous function (Devroye, 1986).
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on the distribution of those unobservables. In turn, these coefficients can be interpreted as the

interaction of observables and unobservables.

Following Autor, Katz and Kearney (2005), let E(W |X = x) = x′β be the conditional

mean model. Then (1) can be rewritten as:

W = X ′β +X ′γ(U) (2)

where γ(U) := α(U) − β. In other words, γ(U) is the difference between the U -quantile and

the mean effect. In this setup, discrepancies in W are due to between difference, associated to

different levels of X, and to within differences, that is, wage disparities associated to different

wages for the same level of X. The first term measures the within effect and the second, the

between one.

This model will be rewritten in a form that includes the two explanations outlined above

for the paradox of progress. First, following Buchinsky (1994) the heterogeneity in wages can

be analyzed in terms of how U affects wages through α or γ. Second, following Bourgignon,

Ferreira and Lustig (2005) heterogeneity in wages could arise because of a non-linear (convex)

functional form in X. For this we consider a simple model with X = [H,H2, Z], where H is a

continuous measure of human capital (i.e. years of schooling) and Z other covariates.

The relevant measure of wage inequality (I) will be the variance of logs. Using the law of

total variance (see Angrist and Pischke (2009, p.33)):

I = V ar(W ) = V ar[E(W |X)] + E[V ar(W |X)] (3)

Then, computing E(W |X) and V ar(W |X) and replacing we obtain the following wage decom-

position:

I = β′V β + tr(ΩV ) + E′ΩE (4)

where V is the variance-covariance matrix of X, E is the vector of (unconditional) means of

X, and Ω = V ar[γ(U)] is a measure of the discrepancies between mean and quantile regression

coefficients. Appendix A.1 provides a detailed derivation of this result.

3.2 Decomposing the marginal effect of education

Given that (4) contains both the mean (E) and the variance (V ) of X, the unconditinal

inequality I not only depends on parameter heterogeneity but also on how covariates are

distributed. Therefore, to study a marginal effect on wage variance it would be necessary to

define how covariates are shifted, in particular, education. Following Fortin et al. (2009, 2018)

we assume a small translation (location shift) in H, years of schooling, to H + ε with ε → 0.

Let δ(T (X)) := limε→0
T [(X+ε)]−T (X)

ε denote the marginal effect on any statistic T (.) due to

a location shift in covariate X. δ(T (X)) is sort of a ‘functional derivative’ that measures the

effect of shifting X on the functional T of the unconditional distribution of W (see Huber and
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Ronchetti (2009) for a general discussion).

Assume now that the parameters β and γ are not affected by this shift, then total effect of

a location shift in X on inequality can be expressed as follows:

δ(I) = β′δ(V )β + tr[Ωδ(V )] + 2E′Ωδ(E). (5)

Appendix A.2, provides a detailed derivation of this result. Consequently, changes can be

decomposed into a between and a within effect as follows:

EFbetw = β′δ(V )β

EFwith = tr[Ωδ(V )] + 2E′Ωδ(E)

with δ(I) = EFbetw + EFwith. In this setup, education affects inequality by affecting the

average wage gap among different groups through the convexity of the relation between wages

and education. The second effect on inequality arises from the within group inequality due to

differences across quantiles.

Consider a simple example to illustrate these effects. For simplicity we assume that X =

[H,H2]. Then,

W = β0 + β1H + β2H
2 + γ0(U) + γ1(U)H + γ2(U)H2.

Then, applying the decomposition discussed above:

EFbetw = 4(β1V11 + β2V12)β2,

EFwith = 2[Ω01 + 2Ω02E1 + 3Ω12E2 + Ω11E1 + 2Ω22E3],

where Vij , Ωij and Ei correspond to the i, j = 0, 1, 2 or i = 0, 1, 2 elements in the matrix

or vector. Convexity is led by β2 6= 0. Note that even though convexity is the leading

factor behind the between of the inequality, it does not necessarily play a role in the within

counterpart. Hence, education might increase inequeality through the within channel even

when the effect of education is linear in the ‘mean’ part of the model (β2 = 0).

Consider the following three illustrative cases:

• Case 1 (linear homoskedastic model): β2 = 0 and Ω has zeros except for Ω00 > 0.

Then, EFbetw = EFwith = 0.

• Case 2 (quadratic homoskedastic model): β2 > 0 and Ω has zeros except for

Ω00 > 0. Then,

EFbetw = 4V12β
2
2 > 0

EFwith = 0
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• Case 3 (lineal heteroskedastic model): β2 = 0 and the diagonal elements of Ω are

non zero.2 Then,

EFbetw = 0

EFwith = 2Ω11E1 + 4Ω22E3 > 0

3.3 Estimation and inference

The proposed decomposition leads to a simple way to quantify and separate the relative con-

tribution of the factors behind the paradox of progress. This subsection describes how to

implement it in practice with a sample of wages and its determinants.

Let {wi, xi}ni=1 be a random sample of waged employees, where x contains h (education)

and h2 and other individual characteristics z. The parameters β and α(τ), τ ∈ (0, 1), are

estimated by OLS and QR as in Koenker and Basset (1978) and Koenker (2005).

In order to estimate Ω, the variance-covariance matrix of γ(U) = α(U) − β where U is

uniformly distributed on [0, 1] we use the following procedure. Consider a grid of M indexes,

τ1 < τ2 < ... < τM , and let α(τm) be the corresponding vector of QR coefficients. Then,

Ω̂ = M−1
M∑

m=1

[α̂(τm)− β̂] · [α̂(τm)− β̂]′

If M is large enough, which in turn should depend on n, then Ω̂
p→ Ω. Portnoy (1991) shows

that the number of relevant quantiles grows at rate n · ln(n).

Finally, consider the estimators of E and V . Let Q be the number of regressors included

in z, then we obtain δ(E) and δ(V ):

δ(E) =


0

1

2E1

01×Q

 and δ(V ) =


0 0 0 01×Q

0 0 V11 01×Q

0 V11 2V12 M1z

0Q×1 0Q×1 Mz1 0Q×Q

 (6)

where E1 = E(h), V12 = Cov(h, h2), M ′z1 = 1z = Cov(h, z) (1×Q vector) and 0A×B is a null

matrix of dimensions A×B. All of these components can be estimated. We use

Ê = n−1
n∑

i=1

xi

V̂ = (n− 1)−1
n∑

i=1

(xi − Ê) · (xi − Ê)′.

2We could also consider the non-diagonal elements for a more involved model.
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Then, replacing in (5)

δ̂(I) = β̂′δ(V̂ )β̂ + tr[Ω̂δ(V̂ )] + 2Ê′Ω̂δ(Ê). (7)

The first term in (7) is the estimation of the convexity effect in returns to education, and

the last two are due to the heterogeneity in returns to human capital. Thus this method allows

us to disentangle the two effects.

Bera, Galvao and Wang (2014) study the asymptotic properties of the joint estimators of the

OLS and QR estimators, and derive uniform weak convergence of the joint process indexed by

the quantile index, which justifies the application of bootstrap procedures. Montes-Rojas, Siga

and Mainali (2017) use this strategy to study parameter heterogeneity comparing mean and

quantile coefficients. For the purposes of this paper, the proposed measure of inequality and its

components are continuous transformations of estimators of OLS and QR coefficients, hence

the continuous mapping theorem applied to the components of (7) guarantee the existence of

a stable asymptotic distribution and justifies the use of the wild bootstrap.

4 Exploring the paradox of progress for the case of Argentina

In this section we implement the proposed decomposition methodology with data from the

Permanent Household Survey (EPH, acronym in Spanish) implemented by the National Insti-

tute of Statistics and Censuses (INDEC) of Argentina. The decomposition is computed in four

distant years to explore different moments of the Argentine wage distribution and to evaluate

long-run changes: 1992, 1998, 2008 and 2015. The criterion for choosing these years was due

to data availability and to take periods with a relative macroeconomic stability and similar

survey and sampling methodologies. The first two years belong to the so-called discontinuous

survey methodology, usually carried out in the months of May and October, while the last two

years correspond to the continuous survey methodology, carried out quarterly. INDEC has

been expanding the sampling coverage over the period of analysis, and therefore we only use

the observations that belong to the urban agglomerates present in the 1992 EPH to keep all

the estimates comparable.3 The data correspond to the surveys collected during the second

semester with the exception of 2015, which is when the EPH changed its survey methodology

in the second half of the year and therefore we used the first semester for comparability reasons.

The sample used in all cases is of men between 16 and 65 years of age.

Table 1 presents the estimated coefficients for the education variables of the Mincer equa-

tions of the conditional mean and some relevant conditional quantiles. These regressions are

only descriptive, for the decomposition a much larger number of quantiles is used. Other

3The urban agglomerates considered are Gran La Plata, Gran Santa Fe, Gran Paraná, Comodoro Rivadavia
- Rada Tilly, Gran Córdoba, Neuquén - Plottier Santiago del Estero - La Banda, Jujuy - Palpalá, Ŕıo Gallegos,
Salta, San Luis - El Chorrillo, Gran San Juan, Santa Rosa - Toay, Ushuaia - Ŕıo Grande, Ciudad de Buenos
Aires, Partidos del Gran Buenos Aires.
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Figure 2: Convexity and Heterogeneity of the returns to education.

Source: own estimates based on the EPH.
Note: the other covariates are evaluated at their sample means.

typical covariates from the Mincer equations literature are also included. Quadratic term are

statistically significant in the four years considered and at the different points of the conditional

distribution. This means that the relationship between wages and educational level is convex.

From the perspective of the theoretical models in Sattinger (1993), this is interpreted as an

indication of a certain relative scarcity of human capital (measured with years of education)

in relation to physical capital.

Additionally, the coefficients of the conditional quantiles are not constant, suggesting a

heterogeneous pattern in the returns to education, similar to that postulated in Becker and

Chiswick (1966). For example, comparing the coefficient of the quadratic term between con-

ditional deciles, the difference is high in 1992 and 2015 (the last decile is at least 2.5 times the

first), slight in 1998 (1.3 times) and null in 2008. Figure 2 shows this result graphically com-

paring the predictions of each Mincer regression equation (keeping the rest of the covariates

in their sample mean). Convexity appears to be more relevant in 1998, while the pattern of

heterogeneity in returns to education has been disappearing over the last fifteen years.

10



Table 1: Partial relationship between wage (log) and educational level. Argentina 1992 - 2015.

OLS QR(0.10) QR(0.25) QR(0.50) QR(0.75) QR(0.90)

1992 (n = 12196)
Education 0.0070 0.0228*** 0.0062*** -0.0022*** 0.0006 -0.0049***

(1.00) (26.08) (8.89) (-5.05) (0.80) (-4.95)
Education Squared 0.0042*** 0.0021*** 0.0034*** 0.0045*** 0.0050*** 0.0059***

(12.73) (52.03) (103.12) (219.24) (152.62) (127.97)

1998 (n = 11228)
Education -0.0198*** -0.0056*** -0.0289*** -0.0334*** -0.0240*** 0.0035***

(-2.76) (-4.94) (-52.82) (-91.66) (-70.88) (6.04)
Education Squared 0.0065*** 0.0049*** 0.0063*** 0.0072*** 0.0073*** 0.0063***

(19.58) (93.00) (249.73) (423.64) (464.61) (237.31)

2008 (n = 14580)
Education 0.0034 0.0103*** 0.0004 -0.0103*** 0.0071*** 0.0168***

(0.51) (14.10) (0.83) (-28.85) (15.52) (25.14)
Education Squared 0.0039*** 0.0034*** 0.0040*** 0.0046*** 0.0041*** 0.0037***

(13.12) (104.41) (209.74) (286.76) (198.73) (125.35)

2015 (n = 14553)
Education -0.0010 0.0432*** 0.0063*** 0.0018*** -0.0065*** -0.0279***

(-0.14) (41.27) (10.41) (4.53) (-12.42) (-57.34)
Education Squared 0.0035*** 0.0014*** 0.0032*** 0.0034*** 0.0040*** 0.0050***

(11.28) (29.98) (118.39) (192.49) (171.48) (233.17)

Source: own estimates based on the EPH.

Note: the other variables included are: potential experience (and its square), marital status,
and controls by geographic region. The t statistics are shown in parentheses, * indicates
significance at 10 %, ** at 5 % and *** at 1 %.
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Table 2: Marginal effect of education on inequality.

1992 1998 2008 2015

1. Inequality
Gini index 40.5 44.0 39.8 35.6
Variance of logarithms 42.5 53.8 48.5 42.1

2. Numerical simulation (location shift) 1.82** 3.69** 1.71** 1.17**
(0.33) (0.39) (0.24) (0.19)

3. RIF estimate (Firpo et al. 2009) 4.65** 6.36** 2.03** 1.36**
(0.51) (0.56) (0.39) (0.38)

4. Quantile decomposition (levels)
Between effect 1.81** 3.69** 1.71** 1.17**

(0.33) (0.39) (0.23) (0.19)
Within effect 1.88** 1.47** 0.56* 0.540

(0.28) (0.32) (0.28) (0.30)
Total change 3.69** 5.16** 2.27** 1.71**

(0.48) (0.55) (0.35) (0.34)

5. Quantile decomposition (%)
Between effect (convexity) 49.1% 71.5% 75.3% 68.4%
Within effect (heterogeneity) 50.9% 28.5% 24.7% 31.6%
Total change 100% 100% 100% 100%

Source: own estimates based on the EPH.
Note: the other variables included are: potential experience (and its square), marital status,

and controls by geographic region. The t statistics are shown in parentheses, * indicates
significance at 10 %, ** at 5 % and *** at 1 %.

The presence of heterogeneities and a convex relationship between (log) wages and educa-

tion indicates that increased education is associated with higher unconditional inequality, as

discussed in Section 2. In order to quantify the strength of these effect, and to decompose their

relative importance in increase inequality, Table 2 presents the results of the decomposition

methodology introduced in this paper. The first two rows of the Table shows the evolution

of wage inequality for men aged 16 to 65, measured with the Gini index and the variance of

the logarithms. Both indicators show a similar evolution: an increase in wage inequality to-

wards the end of the 90s, a relevant distributional improvement in the 2000s, slightly sustained

towards the middle of the last decade.

The second block of Table 2 presents a numerical simulation exercise similar to those

in the literature based on the conditional mean. It uses the Mincer equation estimated by

OLS and its residuals to re-compute a new counterfactual wage distribution after a small

horizontal translation of education. Specifically, if an individual i has an education level of

hi, the exercise is to impute hi + ε years of education and construct a counterfactual salary
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(in logarithms) ws
i through the prediction of the conditional mean, adding an OLS residual.

Then, the change in (unconditional) inequality is calculated as [V (ws) − V (w)]/ε, where ε is

a small value. 4 The next block of Table 2 contains the change in variance estimated with

the Firpo et al. (2009) methodology through RIF regression. Both methodologies show an

unequalizing effect of education on wages, reaching its maximum impact in the late 1990s.

Although both methodologies measure the effects of a small location shift on education, the

discrepancies between them is likely due to the fact that the RIF regression is more accurate

because it contemplates the entire information of the conditional distribution of wages, while

the numerical simulation only extrapolates the behavior of the conditional mean. Nevertheless,

these methodologies do not lead to a natural way to separate the effects of convexity from those

of heterogeneity.

The fourth and fifth blocks of Table 2 show the results of implementing the decomposition

proposed in this paper. We set a grid of values for τ = 0.005, 0.01, . . . , 0.99, 0.995 for the

quantile regressions, hence M = 199 equations are estimated for each year. 5 The results show

that the total effect is similar to that estimated through the RIF method.

All terms in the decomposition are statistically significant at the usual levels. At the

beginning of the 90s, convexity and heterogeneity had the same relevance on the increased

inequality due to more education. However, the effect of convexity of the mean returns becomes

more relevant towards 1998 (over 70%) and seems to grow gradually in the following decade

and a half, where the effect of heterogeneity becomes statistically irrelevant in 2015.

Using the theoretical framework discussed in Section 2, this gap in the relevance of the two

unequalizing forces could give rise to some interpretations of how the functioning of the labor

market has changed. The increase in the relevance of convexity in the returns to education

could be indicating a certain relative scarcity of supply in the stock of available human capital

in relation to the variety of the type of qualified tasks demanded by employers. Consequently,

the market pays more than proportionally more educated workers, who are likely able to work

in multiple tasks. On the other hand, the decreasing role of the heterogeneity in returns

to education could be associated with a less important role of the market’s unobservable

wage determinants (innate skills, tenacity, intelligence, luck, etc.). This would indicate some

direct loss in the return received by these unobservable factors in the market, or a decreased

complementarity with education.

5 Concluding remarks

This presents a decomposition methodology for the marginal effect of education on uncon-

ditional wage inequality. The proposed method quantifies the relevance of two empirical ar-

4The value used in this paper is ε = 0.01.
5This number of equations is similar to Melly (2005) for generating counterfactual distributions with many

quantile regressions.
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guments previously outlined in the literature to explain the unequalizing effect of education,

labeled as the paradox of progress. The first one is based on the convexity of the Mincer

equation interpreted as a conditional mean, while the other one focuses on the heterogeneity

of returns to education at different levels of the conditional distribution of (log) wages.

The key idea of our decomposition is based on a ‘functional derivative’ as in in Firpo et al.

(2009) applied to the variance of the logarithms as the indicator of inequality. Our proposal

only requires consistent estimates of the parameters of the conditional mean and quantiles.

The method applies naturally to any consistent regression (instrumental variables, panel data,

etc.).

The implementation of the decomposition for the case of Argentine shows that in the early

1990s both convexity and heterogeneity had the same importance as unequalizing factors due

to increased education. Still, towards the end of the period studied, the effect of convexities

dominates. This change in the relevance of the two unequalizing forces could give rise to some

interpretations of how the functioning of the labor market has changed. On the one hand,

the increase in the relevance of convexity in the returns to education could be indicating a

certain relative scarcity of supply in the stock of available human capital in relation to the

variety of the type of qualified tasks demanded by employers. Consequently, the market pays

more than proportionally more educated workers, who are likely to be able to work on multiple

tasks. On the other hand, the decreasing role of the conditional heterogeneity in returns to

education would be associated with a less important role of the market’s unobservable wage

determinants (innate skills, tenacity, intelligence, luck, etc.). This would indicate some direct

loss in the return received by these unobservable factors in the market, or indirectly due to a

lesser complementarity of these with the educational level of the individuals. A detailed study

behind these mechanisms is a relevant topic of further research.
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Battistón, D., Garćıa Domench, C. and Gasparini, L. (2014). Could an Increase in Education

Raise Income Inequality? Evidence for Latin America . Latin American Journal of Economics

51(1), 1-39.

14



Beccaria L., Maurizio R. and Vázquez G. (2015) Recent decline in wage inequality and for-

malization of the labour market in Argentina . International Review of Applied Economics

29(5):677–700

Becker, G. and Chiswick, B. (1966) Education and the distribution of earnings. American

Economic Review 56(1/2), 358-369.

Bera, A., Galvao, A. Wang, L. (2014). On testing the equality of mean and quantile effects.

Journal of Econometric Methods 3(1), 47-62.

Bourguignon, F., Lustig, N. and Ferreira. F. (2004) The Microeconomics of Income Distribu-

tion Dynamics. Oxford University Press, Washington.

Buchinsky, M. (1994) Changes in the U.S. wage structure 1963-1987: Application of quantile

regression. Econometrica 62(2), 405-458.

Buchinsky, M. (2001) Quantile regression with sample selection: Estimating women’s return

to education in the U.S. Empirical Economics 26, 87-113.

Card, D. (2001). Estimating the Return to Schooling: Progress on Some Persistent Economet-

ric Problems, Econometrica, 69, 1127-1160.

Casal, M., Morales, M. y Paz Terán, C. (2011). Educational Inequality in Argentina: 1970-2010

. Anales de la AAEP, Mar del Plata 2011.

Chernozhukov, V. y Hansen, C. (2005). An IV model of quantile treatment effects . Econo-

metrica 73 (1), 245–262.

Falaris, E. (2008) A Quantile Regression Analysis of Wages in Panama . Review of Develop-

ment Economics, 12(3), 498-514.

Ferreira, F., Firpo S. and Messina, J. (2016) Understanding recent dynamics of earnings in-

equality in Brazil . In: Schneider BR (ed) New Order and Progress: Development and Democ-

racy in Brazil, 187–211. Oxford Scholarship Online

Fersterer J. y Winter-Ebmer, R. (2003). Are Austrian Returns to Education Falling over

Time?, Labour Economics 10(1): 73-89.

Firpo, S.P., Fortin, N.M. and Lemieux, T. (2009) Unconditional quantile regressions. Econo-

metrica 77(3): 953-973.

Firpo, S.P., Fortin, N.M. and Lemieux, T. (2018) Decomposing Wage Distributions Using

15



Recentered Influence Function Regressions. Econometrics 6(3): 41.

Fiszbein, A., Giovagnoli, P. y Patrino, H (2007) Estimating the Returns to Education in

Argentina using Quantile Regression Analysis: 1992-2002 . Económica, Vol. LIII, Nro. 1-2.
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Appendix

A.1 Derivation of eq. (4)

Consider equation (1) and calculate the expectation of W conditional on X = x, then

E(W |x) = x′E[α(U)|x] = x′E[α(U)] := x′β. (a.1)

Note that β has been defined as the expectation of the random vector α(U), where U |x is

Uniform(0, 1). That is, the parameters β of the conditional expectation are the average of

the parameters of all the conditional quantiles.

On the other hand, consider (2) and compute the conditional variance

V ar(W |x) = V ar[x′β|x] + V ar[x′γ(U)|x] = x′V ar[γ(U)]x := x′Ωx, (a.2)

where Ω has been defined as the matrix of variances of the vector γ(U). Note that by construc-

tion the expectation E[γ(U)] = E[α(U)−β] = 0 and therefore V ar[γ(U)] = E[γ(U)γ(U)′] = Ω.

That is, the matrix Ω is a notion of distance between the mean and the quantiles of the dis-

tribution W |X.

Combining and using the Law of Iterated Variances,

V ar(W ) = V ar[X ′β] + E[X ′ΩX]

Then, using properties of variance for the product of vectors and properties of expectation for

quadratic forms:

V ar(W ) = β′V ar(X)β + tr[ΩV ar(X)] + E(X)′ΩE(X).

A.2 Derivation of eq. (5)

(5) is a particular case of the notion of (partial) functional derivative proposed by Firpo et al.

(2009). In this literature it is usual to assume that the distribution of w|x is not affected by

changes in the distribution of x. This assumption translated into our quantile model means

that the parameters β and Ω do not change as a consequence of a location shift in any of the

regressors included in x. Intuitively, this assumption makes explicit the fact that it is a partial

equilibrium analysis, in the sense that a small change in education (measured by h) does not

change the returns to education. The functional derivative of the inequality I with respect to

a horizontal translation in h is obtained by computing a differential limit of equation (3.4).

For example, to derive the expression β′V β (first term of I) we solve the following limit:

18



δ[β′V ar(x)β] = lim
ε→0

[β′V ar(x+ ε)β]− [β′V ar(x)β]

ε

= lim
ε→0

β′[V ar(x+ ε)− V ar(x)]β

ε

= β′
[

lim
ε→0

V ar(x+ ε)− V ar(x)

ε

]
β := β′δ(V )β

Using the previous reasoning but applied to the rest of the terms of equation (4), it follows

that:

δ[tr(ΩV )] = tr[Ωδ(V )] and δ(E′ΩE) = 2E′Ωδ(E)

Finally, adding these three components gives equation (5) as a result.

A.3 Derivation of eq. (6)

To obtain the expressions (6) it is convenient to analyze each of the elements in E and V . The

matrix V contains all the variances and covariances of the variables included in the vector x,

while E is a vector that contains the expectation x. Formally,

E :=


E0

E1

E2

Ez

 and V :=


V00 V01 V02 V0z

V10 V11 V12 V1z

V20 V21 V22 V2z

Vz0 Vz1 Vz2 Vzz


where the element notation includes the following scalars,

Ek = E(hk) and Vjk = Cov(hj , hk)

for k = 0, 1, 2 y j = 0, 1, 2, together with the following (Q× 1) vectors

Ez = E(z) and Mkz = Cov(hk, z) = M ′zk

for k = 0, 1, 2, and the (Q×Q) matrix

Mzz = V (z)

Note that when k = 0 the vector M0z is a null vector, because it is the covariance between

h0 = 1 with each of the regressors z.

The terms δ(E) and δ(V ) are the functional derivatives of each of the elements of E and V ,
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respectively. Consider a location shift ε that only affects the distribution of years of education

h. Then we can calculate the functional derivatives of each element in E and V as follows:

(i) First-order moments of x

First, analyze the effect on Ek:

δ(Ek) = lim
ε→0

E[(h+ ε)k]− E(hk)

ε
= E

[
lim
ε→0

(hε)k − hk

ε

]
= E(khk−1) = kEk−1 (a.3)

In addition, the vector Ez = E(z) does not change with a horizontal translation in ε,

therefore it is evident that δ(Ez) = 0.

Substituting all this in δ(E) gives the first part of (3.6).

(ii) Variance and covariance between hj and hk

The origin of this block of matrix V is the inclusion of h and h2 as part of the covariates

x. Note that Vjk = Ej+k − EjEk, then using the result (a.3) follows that:

δ(Vjk) = δ(Ej+k − EjEk)

= δ(Ej+k)− δ(Ek)Ej − δ(Ej)Ek

= (j + k)Ej+k−1 − kEk−1Ej − jEj−1Ek

= kVj(k−1) + jV(j−1)k (a.4)

para j = 0, 1, 2 y k = 0, 1, 2.

(iii) Covariance between hk and the regressors z

Again, the inclusion of h and h2 together with the rest of the covariates z results in this

block of the matrix V . First, note that if k = 0, the vector Mz0 is not affected by a

location shift in h variable, therefore δ(M0z) is a vector of zeros of dimension Q:

δ(M0z) = 01×Q (a.5)

For k > 1, each element is analyzed separately. Let zq be a covariable in z. The element

q of the vector Mkz is Cov(hk, zq) = E(hkzq)− E(hk)E(zq), therefore:

δ[Cov(hk, zq)] = δ[E(hkzq)− E(hk)E(zq)]

= δ[E(hkzq)]− δ[E(hk)]E(zq)

= kE(hk−1zq)− kE(hk−1)E(zq)

= kCov(hk−1, zq)
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for k = 1, 2 and q = 1, 2, . . . , Q, where result (a.3) has been used together with the fact

that E(zq) does not change before a translation of h. Moreover,

δ[E(hkzq)] = ... = E

[
lim
ε→0

(h+ ε)k − hk

ε
· zq
]

= kE(hk−1zq)

Then, the vector Mkz changes as follows:

δ[Mkz] = kM(k−1)z (a.6)

for k = 1, 2. Note that when k = 1, the change in M1z is a null vector of dimension Q,

because M0z is a vector of zeros.

(iv) Variances and covariances of z

These moments do not depend on the h distribution, therefore δ(Mzz) is a null matrix of

dimension Q×Q:

δ[Mzz] = 0Q×Q (a.7)

Substituting the results (a.4) - (a.7) in δ(V ) gives as a result the second part of equation

(3.6).
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