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Abstract

This paper develops a random e↵ects error components structure

for network data regression models. In particular, it allows for edge

and triangle specific components, which serve as a basal model for

modeling network e↵ects. It then evaluates the potential e↵ects of

ignoring network e↵ects in the estimation of the variance-covariance

matrix. Network e↵ects will typically imply heteroskedasticity, and

as with the Moulton factor, the key role is given by the joint consid-

eration of the intra-network correlation of the error term(s) and the

covariates. Then it proposes consistent estimator of the variance com-

ponents and Lagrange Multiplier tests for evaluating the appropriate

model of random components in networks. Monte Carlo simulations

show the tests have very good performance in finite samples.
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1 Introduction

Statistical inference when data are grouped into clusters is an important

issue in empirical work, and failure to control for within-cluster correlation

can lead to misleadingly small standard errors (see the discussion in Cameron

and Miller [18]). This is especially important when using aggregate variables

on micro units in which ordinary least-squares (OLS) standard errors are

seriously underestimated. The seminal work of Moulton ([40, 41, 42]) allows

for a quantification of this potential pitfall, a fact that has been emphasized

in the Angrist and Pischke ([1], ch.8) textbook among many others (see

Montes-Rojas [38]).

A particular data structure related to cluster e↵ects is that of networks.

Matched data, where the interaction among agents is observed, are one type

of such network data, where the information on who is in direct or indirect

contact with whom matters. This has attracted a considerable attention

with regards to spillover e↵ects in education, production, financial markets,

trade and many others. See de Paula [19] for a recent selective review of the

literature.

Within a given network observations are not independent and the depen-

dence structure is related to the network position of the observation. There

is no obvious pattern to construct clusters or groups. Network models di↵er

from cluster ones in the heterogeneity of the groups which need to be defined

ad-hoc within the network as there are no obvious way to group observations.

The most obvious type of intra-network correlation arises when we consider

observations given by vertices or nodes that have a common edge or link. If

we consider a link-specific e↵ect, this would result in a specific factor that

arises for linked nodes and not for others. Nodes that share a link might be

correlated with each other.

We are mostly concerned with a linear regression model where obser-

vations are the nodes and specifically with the correct estimation of the
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variance-covariance structure. Thus we explore error components structure

where the components depend on local network features of the observations.

In particular, for a given graph we construct the error components model

when considering link and triangle specific e↵ects.

The main purpose of this exercise is that the empirical researcher starts

from a standard variance-covariance structure (i.e., independent error com-

ponents), and then tests sequentially for potential components’ patterns (i.e.,

edges, triangles, diamonds, cycles, etc.).

First, contrary to the standard error components models, network e↵ects

will typically imply heteroskedastiticy. Take for instance the vertice&edge-

only error components model where each vertice will have a vertice specific

random component and an edge specific random component. Vertices that

have one link are di↵erent from those that have two or more. The edge

specific component will in fact generate a higher variance for vertices with

more links.

Second, as with the Moulton factor, the key role is given by the joint

consideration of the intra-network correlation of the error term(s) and the

covariates. More formally, given an intra-network covariance structure of the

error term and one of the covariates, the potential e↵ect of misspecifying

the variance-covariance of the estimators will depend comparison of the dif-

ferent correlation model will depend on the sample intra-network covariance

between the covariance factors of the error term and the covariates.

In most empirical settings, both covariance factors are positively corre-

lated (i.e., a high correlation between two unobservables usually corresponds

to a high correlation between the covariates), and thus this determines that

the OLS estimator variance that do not consider the potential network ef-

fects will underestimate the true variance. In particular, in the special case

of covariates with no intra-network correlation, the standard OLS variance

is correct.

This paper di↵ers from the literature in several ways. First, many net-
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work related contributions focus on dyadic data structures where the unit of

observation is the pair, i.e. the link, rather than the node. Among these,

Ho↵ et al. [25, 24] develop likelihood models. Second, most of the linear re-

gression network models using nodes as the unit of observations build upon

spatial regression models. The seminal contribution is Manski [36]. Spa-

tial models have the advantage of estimating fewer parameters (the spatial

autoregressive parameter) than our proposed network random e↵ects com-

ponents. Moreover, they will not face the restrictions determined by the

nonnegativity contraints, but they face problems of their own. Many net-

work features that can be modeled from imposing additional parameters on

the powers of the adjacency matrix.

2 Network error components model

2.1 Network definitions and notation

Consider an undirected graph G = (V, L) as a mathematical structure con-

sisting of a set V of vertices (also commonly called nodes) and a set L of

edges (also commonly called links). Unless otherwise specified the graph is

undirected where elements of L are unordered pairs (i, s) of distinct vertices

(i, s) 2 V ⇥ V . If the graph were directed where the elements of L are

ordered pairs (i, s) 2 V ⇥ V . The number of vertices is N = |V | and the

number of edges is M = |L|. Without loss of generality, we will label the ver-

tices simply with the integers 1, . . . , N , and the edges, 1, . . . ,M . Note that

M  N(N � 1)/2 for undirected graphs (and M  N(N � 1) for directed

ones).

For our purposes consider a set of triangles in undirected graphs as

Triangles = {(i, s, r) 2 V
3
, i < s < r, (i, s), (s, r), (i, r) 2 L

3}, the num-

ber of triangles is T  N(N � 1)(N � 2)/6. The set of triangles could be

defined di↵erently for directed graphs.
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The fundamental connectivity of a graph G may be captured in an N⇥N

binary matrix A with entries

ais =

(
1 if vertices {i, s} 2 L

0 otherwise
,

the edge-incidence matrix B, an N ⇥M binary matrix with entries

bij =

(
1 if vertex i is incident to edge j

0 otherwise
,

and the triangle incidence matrix C, an N ⇥ T binary matrix with entries

cik =

(
1 if vertex i is incident to triad k

0 otherwise
.

For an undirected network A is symmetric and we can define the vertices’

degree {di}Ni=1 which can be obtained by diag(BB
>), and vertices’ triangles

{ti}Ni=1 which can be obtained by diag(CC
>).

The definitions above correspond to unweighted networks. We could ex-

tend this to weighted networks by defining an N ⇥N binary matrix w with

entries

wis =

(
wis if vertices {i, s} 2 L

0 otherwise
.

The matrices B and C need to be constructed accordingly.

2.2 Random e↵ects in the undirected graph model

Consider the following assumption on the probability space.

Assumption 1:

Let G 2 GN be a space of graphs of size N and x 2 XN the domain of

covariates, �(GN ,XN) a �-algebra in the sample space (GN ,XN), and PN a
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probability space on the measurable space on (GN ,XN), �(GN ,XN). Then

[(GN ,XN), �(GN ,XN),PN ] form a probability space.

Assumption 2:

Let ⌫, µ and � be mutually independent random vectors of size N , M and

T , respectively.

Correct mean specification: 8i,j,t E(⌫i | x,G) = E(µij | x,G) = E(�ijt |
x,G) = 0.

Variance: 8i,j,t Var(⌫i | x,G) = �
2
⌫ , Var(µij | x,G) = �

2
µ, Var(�ijt | x,G) =

�
2
� .

Consider the error components regression model for an unweighted undi-

rected graph network structure,

yi = xi� + "ijk, (1)

"i := E[yi � E(yi | x,G)] = ⌫i +
MX

j=1

bijµj +
TX

k=1

cik�k,

i = 1, 2, ..., N.

The error components can also be written as

"i = ⌫i +
NX

i=1

NX

s>i

aisµ(is) +
NX

i=1

NX

s>i

NX

r>s

aisasrair�(isr),

where µ(is) and �(isr) correspond to the common edge and triangle e↵ects,

respectively.

In matrix notation the model above can be written as y = x� + ", where

y and " are N ⇥ 1 vectors, x is N ⇥K matrix, and � is a K⇥ 1 vector. Then

consider

" = ⌫ +Bµ+ C�,
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and

⌦ := E[""> | x,G] = E[⌫⌫> +Bµµ
>
B

> + C��
>
C

> | x,G] (2)

= �
2
⌫IN + �

2
µBB

> + �
2
�CC

>
,

where ⌫ is a N ⇥ 1 random vector, µ is a M ⇥ 1 random vector, � is a T ⇥ 1

random vector.

Note that this model allows for the covariates x to be dependent on

the network structure. Thus for instance, vertice-specific features such as

network centrality (degree, betweeness, clustering, etc.) may be covariates

of the model.

Consider the OLS estimator �̂ = (x>
x)�1

x
>
y, and consider the goal of

estimating V ar[�̂ | x,G]. Given the assumptions of the model, then consider

Then

V ar[�̂ | x,G] = (x>
x)�1(x>⌦x)(x>

x)�1
.

Note that ⌦ acts as a selector and weighting matrix, which selects which

row and columns of x should be considered and weights them accordingly.

In the case with no network e↵ects, defined as the vertex-only model,

⌦v = �
2
⌫IN ,

and thus only the xs that correspond to the same vertices i are considered.

Thus

x
>⌦vx = �

2
⌫

NX

i=1

xix
>
i .

The random-e↵ects vertice&edge-only incidence model would have

⌦ve = �
2
⌫IN + �

2
µBB

>
.
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Thus

x
>⌦vex =

NX

i=1

(�2
⌫ + di�

2
µ)xix

>
i + 2�2

µ

N�1X

i=1

NX

s>i

aisxix
>
s .

=
NX

i=1

(�2
⌫ + di�

2
µ)xix

>
i + 2�2

µ

N�1X

i=1

NX

s>i

(
MX

j=1

bijbsj)xix
>
s .

Two things are important to notice from this variance-covariance. First,

note that the model implies an heteroskedastic structure, where the diagonal

elements are proportional to the degree di of each vertex. Second, the o↵-

diagonal elements that have a role are those of vertices that have a common

link, which in this case have a maximum of one.

The random-e↵ects vertice&triangle-only incidence model would have

⌦vt = �
2
⌫IN + �

2
�CC

>
.

Thus

x
>⌦vtx =

NX

i=1

(�2
⌫ + ti�

2
� )xix

>
i + 2�2

�

N�2X

i=1

N�1X

s>i

NX

r>s=1

airasraisxix
>
s

=
NX

i=1

(�2
⌫ + ti�

2
� )xix

>
i + 2�2

�

N�1X

i=1

NX

s>i

(
TX

k=1

cikcsk)xix
>
s .

In the same way as the vertice&edge-only model the model has an het-

eroskedastic structure that depends on the number of triangles each vertice

belongs to. Moreover the o↵ diagonal elements are proportional to the num-

ber of triangles each edge belongs to (maximum N � 2).

Joining both models gives

x
>⌦vetx =

NX

i=1

(�2
⌫ + di�

2
µ + ti�

2
� )xix

>
i + 2

N�1X

i=1

NX

s>i

"
�
2
µ

MX

j=1

bijbsj + �
2
�

TX

k=1

cikcsk

#
xix

>
s .
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2.3 Extension to weighted networks

The results above can be easily extended to weighted networks where A

is replaced by W , and the B and C matrices are also constructed using

the weighted components. Note that for weighted networks the potential

misspecification problems in estimating the variance-covariance components

are likely to be more severe if wis / xix
0
s.

3 Consistent variance components estimators

Here we consider simple consistent estimators of the variance components

using ANOVA-type decompositions.

Consider the following statistics:

S1 =
1

N

NX

i=1

u
2
i ,

S2 =
1

M

N�1X

i=1

NX

s>i

aisuius,

S3 =
1

T

N�2X

i=1

N�1X

s>i

NX

r>s

aisasrairuius.

S1 contains the usual sum of squared errors. Note that for each vertex

there will be at most N � 1 edges to which it belongs and N � 2 triangles.

Moreover, each edge will be repeated twice for undirected graphs, one for

each vertex, and each triangle will be repeated three times, one for each

vertex. Then,

E[S1 | x,G] = �
2
⌫ + �

2
µ

2M

N
+ �

2
�

3T

N
.

E[S1 | x,G] is the (conditional) variance of a vertex.

S2 contains the cross products of the error terms, which corresponds to

the number of edges M . This corresponds to the existing active links (i.e.,
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ais = 1, s > i). For each active link, there could be at most N � 2 triangles

that can be formed from it. Now, each triangle will be repeated three times

for each link. That is, for S2 if we have an edge, say (i, s), that belongs to a

triangle, say (i, s, r), such that r > s > i, then the triangle e↵ect �(i,s,r) will

appear in the edges (i, s), (s, r), and (i, s). Thus, each triangle will be found

3 times for every edge. Thus,

E[S2 | x,G] = �
2
µ + �

2
�

3T

M
.

E[S2 | x,G] is the (conditional) covariance of two vertices that have a com-

mon edge.

Finally, S3 computes the cross products for active triangles (i.e., ais =

asr = air = 1, r > s > i). Note that for S3 if we have a triangle, say (i, s, r),

then two nodes, say i and s, must share both µ(i,s) and �(i,s,r). Then,

E[S3 | x,G] = �
2
µ + �

2
� .

E[S3 | x,G] is the (conditional) covariance of two vertices that have common

edge and triangle(s).

In the absence of triangle e↵ects, i.e., �2
� = 0, the model simplifies to

�
2
⌫ = E[S1 | x,G]� E[S2 | x,G]

2M

N
,

�
2
µ = E[S2 | x,G],

such that the nonnegativity restrictions are E[S2 | x,G] � 0 and E[S1|x,G]
E[S2|x,G] �

2M
N , such that the ratio of the variance of a vertex to the covariance of

two random vertices needs to be bigger than the average number of edges

per vertex. First, take for instance a cycle graph, a 2-regular graph with

all vertices of degree 2 such that M = N . For this case the variance of the

vertices need to be at least twice the covariance. Second, consider a complete

graph with M = N(N�1)/2. In this case, the ratio of variance to covariance

needs to grow faster than the number of vertices.
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In the absence of edge e↵ects, �2
µ = 0, the model simplifies to

�
2
⌫ = E[S1 | x,G]� E[S3 | x,G]

3T

N
,

�
2
� = E[S3 | x,G],

such that the nonnegativity restrictions are E[S3 | x,G] � 0 and E[S1|x,G]
E[S3|x,G] �

3T
N , such that the ratio of the variance of a vertex to the covariance of two

random vertices needs to be bigger than the average number of triangles per

vertex.

For the edge and triangle e↵ects model, solving for (�2
⌫ , �

2
µ, �

2
� ) gets

�
2
⌫ = E[S1 �

E[S2 | x,G]� E[S3 | x,G]3TM
1� 3T

M

2M

N
� E[S3]� E[S2]

1� 3T
M

3T

N
,

�
2
µ =

E[S2 | x,G]� E[S3 | x,G]3TM
1� 3T

M

,

�
2
� =

E[S3 | x,G]� E[S2 | x,G]

1� 3T
M

.

For this case the nonnegativity restrictions imply: (i) E[S3|x,G]
E[S2|x,G] � 1, (ii)

E[S2|x,G]
E[S3|x,G] � 3T

M , (iii) E[S1|x,G]
E[S2|x,G] � 2M

N , and (iv) E[S1]
E[S3]

� 3T
MN . Restriction (i)

implies that the covariance among vertices that belong to a triangle must

be larger than the covariance of vertices that share a link. Restriction (ii)

states that the ratio E[S3|x,G]
E[S2|x,G] cannot exceed the average number of trian-

gles per edge. Restriction (iii) correspond to the number average number of

links per vertex. Restriction (iv) is a combination of the above with no clear

interpretation.

The consistent estimators are then constructed by defining Ŝ1, Ŝ2, and

Ŝ3, where the OLS residuals û are used, and the nonnegativity constraints

are imposed.
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4 Specification tests for undirected unweighted

graphs

The log likelihood function for this problem is given by

L(�, ✓) / �1

2
ln |⌦|� 1

2
"
>⌦�1

",

with ✓ = (�2
⌫ , �

2
µ, �

2
� ), " = y � x�, and ⌦ is given by equation (2). In this

model we have that the Fisher information matrix is block diagonal in terms

of � and ✓. This feature also applies to non-Gaussian error components,

where in fact OLS estimators for � are consistent. In turn, this simplifies the

subsequent algebra where we only consider ✓ for constructing our LM tests.

Let ✓ 2 ⇥ ✓ Rp, where p is the dimension of ✓. Using the formulas in

Harville ([23], p.326) (see also [3]) the score functions can be expressed as

sr(✓) = @L/@✓r = �1

2
tr(⌦�1

@⌦/@✓r) +
1

2
{u>⌦�1(@⌦/@✓r)⌦

�1
u},

for 1  r  p. The information matrix J can be obtained for for 1  r, k  p.

as

@
2
L/@✓r@✓k =

1

2
tr

✓
⌦�1

⇢
@
2⌦

@✓r@✓k
� @⌦

@✓r
⌦�1 @⌦

@✓k

�◆

+
1

2
u
>⌦�1

✓
@⌦

@✓r@✓k
� 2

@⌦

@✓r
⌦�1 @⌦

@✓r

◆
⌦�1

u,

and

Jrk(✓) ⌘ �E(@2
L/@✓r@✓k) =

1

2
tr

✓
⌦�1 @⌦

@✓r
⌦�1 @⌦

@✓k

◆
.

Note that

@⌦/@�2
⌫ = IN , (3)
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@⌦/@�2
µ = BB

>
, (4)

@⌦/@�2
� = CC

>
. (5)

In order to construct LM tests, first note that the block diagonality be-

tween � and ✓ allow us to focus on the scores corresponding to ✓ only. Second,

consistent estimators of ✓ under the null can be obtained using an ANOVA-

type analysis as in Section 3. Hence our tests will be based on Neyman’s

C(↵) principle, which produces tests that are asymptotically equivalent to

likelihood based LM tests under
p
N -consistent non-maximum likelihood es-

timation of the nuisance parameters. See Bera and Bilias [10] for a dicussion.

Consider a partition of ✓ = (✓>1 , ✓
>
2 )

>, where ✓2 contains the parameters

under the corresponding null hypothesis H
2
0 : ✓2 = 0, and ✓1 the nuisance

parameters that need to be estimated. In our particular case, ✓ will be

partitioned into either ✓1 = �
2
⌫ , ✓2 = �

2
µ when we want to test for the presence

of edge network e↵ects assuming �
2
� = 0, ✓1 = �

2
⌫ , ✓2 = �

2
� when we want to

test for the presence of edge and triangle network e↵ects assuming �
2
µ = 0,

✓1 = �
2
⌫ , ✓2 = (�2

µ, �
2
� ) when we want to test for the presence jointly of edge

and triangle network e↵ects, ✓1 = (�2
⌫ , �

2
µ), ✓2 = �

2
� when we want to test for

the presence pf triangle e↵ects assuming edge e↵ects or ✓1 = (�2
⌫ , �

2
� ), ✓2 = �

2
µ

when we want to test for the presence pf triangle e↵ects assuming edge e↵ects.

Correspondingly, the score will be partitioned as s(✓) = (s1(✓)>, s2(✓)>)>,

and the information matrix as J (✓) =

 
J11(✓) J12(✓)

J21(✓) J22(✓)

!
.

Conditional LM statistics for H
2
0 under maximum likelihood estimation

are defined as

LM2(✓) = s2(✓)
>{J22(✓)� J21(✓)J �1

11 (✓)J12(✓)}�1
s2(✓).

Neyman’s C(↵) adjusted scores are defined as

s2·1(✓) ⌘ s2(✓)� J21(✓)J �1
11 (✓)J12(✓)s1(✓).
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Then, the Neyman’s C(↵) LM statistic is

LM2·1(✓) = s2·1(✓)
>{J22(✓)� J21(✓)J �1

11 (✓)J12(✓)}�1
s2·1(✓).

A well known result is that LM2·1(✓̂)
d! �

2
dim(✓2)

, where ✓̂ is a
p
N -consistent

estimator under the corresponding null hypothesis. Note that when we esti-

mate the parameters under the joint null �nu
2 = �

2
� = 0, the ML estimators

of � and �
2
⌫ coincide with the least-squares estimators.

Consider now Bera and Yoon [15] locally size-robust type statistics. For

this, consider a new partition of ✓ = (✓1, ✓2, ✓3)0 = (✓1, ✓23)0 where we want

to test for the null hypothesis H
2
0 , we consider ✓1 as nuisance parameters

to be estimated, but the validity of the test is a↵ected by the validity of

H
3
0 : ✓3 = 0. Global valid tests for H2

0 would require consistent estimators of

✓3 as in the construction of the conditional LM statistics above. In practice,

however, estimators of ✓3 may be cumbersome or it might su↵er identification

conditions under the null. Thus, Bera and Yoon [15] has been successfully

implemented to test one particular null without estimating the other nuisance

parameter ✓3. This procedure is valid under
p
N -local deviations of H3

0 , but

di↵erent empirical studies confirmed its validity for non-local deviations too.

In our particular case, the parameter will be partitioned as ✓1 = �
2
⌫ , ✓2 =

�
2
µ, ✓3 = �

2
� . This procedure thus allows us to test for triangle e↵ects but

without estimating edge e↵ects variance, even when we are estimating under

the joint null hypothesis H
2
0&H

3
0 : �2

µ = �
2
� = 0, which is just least-squares

estimation. The statistic is constructed as in Bera, Montes-Rojas and Sosa-

Escudero [12, 13] for non-maximum likelihood estimation as

LM2(3)·1(✓) = s2(3)·1(✓)
0[J2(3)·1(✓)]

�1
s2(3)·1(✓),

where

s2(3)·1(✓) = s2·1(✓)� J23·1(✓)J �1
33·1(✓)s3·1(✓),
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J2(3)·1(✓) = J22·1(✓)� J23·1(✓)J �1
33·1(✓)J32·1(✓),

J22·1(✓) = J22(✓)� J21(✓)J �1
11 (✓)J12(✓),

J33·1(✓) = J33(✓)� J31(✓)J �1
11 (✓)J13(✓),

J23·1(✓) = J23(✓)� J23,1(✓)J �1
11 (✓)J1,23(✓).

Then LM2(3)·1(✓̂)
d! �

2
dim(✓2)

for ✓̂ being a consistent estimator under the

joint null hypothesis H2
0&H

3
0 : �2

µ = �
2
� = 0 and for ✓3 = �

2
� = o(1/

p
N).

In sum, the LM tests considered are:

LMµ: LM test for H0 : �2
µ = 0 when �

2
⌫ is estimated as MSE after OLS

estimation and �
2
� = 0 is assumed.

LM�: LM test for H0 : �2
� = 0 when �

2
⌫ is estimated as MSE after OLS

estimation and �
2
µ = 0 is assumed.

LMµ,�: LM test for H0 : �2
µ = �

2
� = 0 when �

2
⌫ is estimated as MSE

after OLS estimation.

LMµ(�): BY test for H0 : �2
µ = 0 when �

2
⌫ is estimated as MSE after

OLS estimation and �
2
� = 0 is allowed to have local deviations.

LM�(µ): BY test for H0 : �2
�0 when �

2
⌫ is estimated as MSE after OLS

estimation and �
2
µ = 0 is allowed to have local deviations.

LM��µ: LM test for H0 : �
2
� = 0 when (�2

⌫ , �
2
µ) is estimated as in

Section 3 after OLS estimation.

5 Monte Carlo experiments

This section explores the small sample performance of the proposed tests

through a Monte Carlo experiment. We will consider the following simple

regression model:
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yi = xi� + "i,

"i = ⌫i +
NX

i=1

NX

s>i

aisµ(is) +
NX

i=1

NX

s>i

NX

r>s

aisasrair�(isr),

i = 1, 2, ..., N,

whereA = {air} is an adjacent contiguity matrix. We assume xi ⇠ iid N(0, 1),

� = 1, ⌫i ⇠ iid N(0, 10), µ(is) ⇠ iid N(0, �2
µ) and �(isr) ⇠ iid N(0, �2

� ).

We simulate two types of networks. First, we consider an Erdös-Rényi

random graph where links are randomly generated with a given probability

pN , i.e., Prob(air = 1) = pN , i, r = 1, . . . , N, i 6= r. For the Erdös-Rényi

graphs we have on average a constant proportion of vertices and edges, N/M ,

using p100 = 0.05, p225 = 0.05⇥ 100/225, p400 = 0.05⇥ 100/400. In this case,

the number of triangles per node is also constant on average. Second, a

queen-type spatial structure where edges are generated according to queen

contiguity, i.e., for a squared board with number of rows and columns n =p
N , for i = 1, . . . , N , air = 1 if r 2 {i � 1, i + 1, i � n � 1, i � n, i � n +

1, i + n � 1, i + n, i + n + 1} with 1  r  N , and air = 0 otherwise. Note

that the considered spatial-type model has a similar number of triangles and

edges for each node, i.e. 8 edges and triangles for a node that is not on the

border of the board. We consider N 2 {100, 225, 400}.
First, we consider the empirical size results where �

2
µ = �

2
� = 0 in Table

6. In all cases, marginal, joint and robust tests have the appropriate size, for

all levels of significance.

Second, we consider the empirical power and robustness for (�2
µ, �

2
� ) 2

{0, 1, . . . , 10}2 in figures 1 and 2.

The former figure report the tests for detecting edge heterogeneity, �µ >

0. Note that the marginal tests LMµ has the largest power performance

for changes in �µ (figures 1-(a) and 1-(c)), followed by the joint tests LMµ�.

However the marginal test also rejects in the direction of �� > 0, as Figures 1-

(b) and 1-(d) show, that is, it is not robust to the presence of triangle e↵ects.
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The BY robust test have good power performance in figure 1-(a), close to the

joint test, but it has low power in the Queen spatial more complex network

model, as shown in figure 1-(c). In fact, the BY is robust to deviations in

�� > 0, as seen in figures 1-(b) and 1-(d).

Tests for triangle e↵ects have a similar performance to those of edge

e↵ects. As in the previous paragraph, the tests have the expected rejection

rates in the direction of �� > 0, and the BY robust test have correct size

for �µ > 0. Note that the conditional test LM��µ estimates �µ, and as such

it should be robust to misspecification in edge e↵ects. For this case the BY

robust tests outperforms it in terms of size and power in the Erdös-Rényi

random graph model, and it is very close to the conditional tests in the

Queen spatial structure.

6 Conclusion

This paper develops a simple model of network random e↵ects that can be

used to estimate the variance-covariance matrix in a linear OLS set up. It

focuses on evaluating the appropriate level of e↵ects, using the example of

links and triangles e↵ects as random components.
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Table 1: Empirical size
N LMµ LM� LMµ,� LMµ(�) LM�(µ) LM��µ

Erdös-Rényi random graph

Size 1%

100 0.009 0.016 0.0145 0.009 0.0165 0.0115

225 0.012 0.0115 0.015 0.013 0.012 0.009

400 0.013 0.012 0.0085 0.0095 0.0075 0.007

Size 5%

100 0.043 0.05 0.0465 0.042 0.052 0.041

225 0.052 0.0485 0.0495 0.052 0.0495 0.041

400 0.047 0.0475 0.049 0.046 0.046 0.0435

Size 10%

100 0.082 0.0885 0.0855 0.089 0.092 0.0765

225 0.1045 0.092 0.102 0.098 0.0995 0.0875

400 0.089 0.087 0.093 0.0965 0.099 0.0915

Spatial queen structure

Size 1%

100 0.0115 0.0105 0.0105 0.01 0.011 0.0115

225 0.0075 0.0065 0.012 0.0145 0.0135 0.014

400 0.0085 0.0085 0.0095 0.012 0.011 0.011

Size 5%

100 0.0475 0.0515 0.047 0.048 0.044 0.046

225 0.045 0.039 0.0565 0.0595 0.052 0.0525

400 0.046 0.0465 0.049 0.0535 0.049 0.0505

Size 10%

100 0.0965 0.0975 0.0955 0.094 0.09 0.097

225 0.0965 0.09 0.1 0.1085 0.1115 0.1125

400 0.0935 0.0965 0.098 0.096 0.0995 0.1015
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Figure 1: LM tests for �2
µ

Erdös-Rényi random graph
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Notes: Monte carlo experiments based on 2000 replications. Solid black

line: LMµ. Dashed red line: LMµ�. Dotted green line: LMµ(�).
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Figure 2: LM tests for �2
�

Erdös-Rényi random graph
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Notes: Monte carlo experiments based on 2000 replications. Solid black

line: LM�. Dashed red line: LMµ�. Dotted green line: LM�(µ). Dash-dot

blue line: LM��µ.


