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1 Introduction

Many relevant economic relationships imply non-linear restrictions on econo-

metric models. A relevant examples are the classic papers by Mishkin (1982a,

1982b) where rational expectations and money neutrality impose non-linear

restrictions on an otherwise linear model of GDP (or unemployment) and an

aggregate demand policy variable.

When the null model is easier to handle the Rao’s score or Lagrange Mul-

tiplier (LM) test is particularly convenient. A problematic situation arises

when the hypotheses under study interact, in the sense that a test for any

of them is affected by the validity of the others. Without loss of generality

assume that there are only two competing hypothesis. Bera and Yoon (1993,

BY hereafter) proposed a modified LM test LM for one hypothesis that is

unaffected by the validity of the other one. The BY test requires that: a)

both competing hypothesis are linear, b) the hypothesis not being tested for

is either valid or invalid in a local sense, c) a fully parametric, likelihood

model is specified. The BY principle has been successfully implemented;

some examples include Anselin, Bera, Florax and Yoon (1996), Godfrey and

Veall (2000), Bera, Sosa-Escudero and Yoon (2001), Baltagi and Li (2001),

Baltagi, Song and Jung (2002) and Montes-Rojas (2010,2011).

Bera, Montes-Rojas and Sosa-Escudero (2010) extended the BY principle

to the generalized method of moments (GMM) framework. More recently,
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Chernozhukov, Escanciano, Ichimura and Newey (2016) construct locally

robust semiparametric GMM estimators inspired on the BY principle.

This paper proposes a GMM based test for non-linear hypothesis that is

robust to locally misspecified possibly non-linear hypothesis. That is, the

procedure is based on an initial consistent GMM estimator of the nuisance

parameters under a given set of possibly nonlinear restrictions. The new

test for one particular non-linear hypothesis is consistent and has correct

asymptotic size independently of whether the other also non-linear hypothesis

are either correct or locally misspecified.

In spite of the well known asymptotic equivalence of LM, Wald or likeli-

hood ratio tests, LM based tests are particularly convenient for the problem

under study. First, LM tests are usually favored when the restrictions un-

der the null hypothesis imply a practically convenient model. Second, LM

tests are invariant to the form of the nonlinear restrictions whereas Wald

type tests are not. As noted by Gregory and Veall (1985b) alternative alge-

braically equivalent configurations of the same null hypothesis may affect the

performance of Wald test significantly in small samples. Phillips and Park

(1988) study this phenomenon using asymptotic analysis. Finally, there is

not an obvious framework to robustify Wald type tests to the presence of

misspecified alternatives, a subject that, as mentioned previously, has been

already explored in the LM and GMM context.

As an illustration we apply them to the study of the rational expectations
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(RE) and neutrality (NE) hypotheses. Mishkin (1982a,1982b), and later Bo-

hara (1991) among others, implemented Wald tests for the joint hypothesis

of RE and NE, and then marginal tests for each hypothesis assuming the

other one does not hold. They find that RE cannot be rejected and strong

evidence against NE. Gregory and Veall (1987) point out that Wald for RE

are extremely sensitive in small samples to the way in which the non-linear

restrictions in such models are parameterized (alternative tests are provided

by Hoffman and Schmidt (1981) and Gregory and Veall (1985a)). Interest-

ingly, and contrary to previous findings, our alternative robust LM-type test

estimates the model under both RE and NE, and rejects the RE hypothesis.

The rest of the paper is organized as follows. Section 2 presents the sta-

tistical framework and the assumptions on the data and parameters. Section

?? develops the robust LM tests for liner and nonlinear restrictions. Section

4 applies the tests to the macro rational expectations hypothesis. Section 5

concludes and discuss further research ideas.

2 Non-linear restrictions and local misspeci-

fication

Consider a set of m population moment conditions that will be used to

construct GMM estimators (see, e.g., Hansen (1982), Hansen and Singleton

(1982) and Newey and West (1987)),
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E [g(z, θ0)] = 0, (1)

where g(z, θ) is an m × 1 vector of functions of data and parameters, z is a

k × 1 random vector and θ is a p× 1 vector of parameters.

When conditions (1) hold the sample moments

gT (θ) =
1

T

T∑
t=1

g(zt, θ),

should be close to zero when evaluated at θ = θ0.

Let ΩT (θ) be an m×m positive semi-definite matrix. Define the loss func-

tion QT (θ) = −1
2
gT (θ)>Ω−1

T (θ)gT (θ). For asymptotic efficiency and to sim-

plify the analysis we will assume limT→∞ΩT (θ) = limT→∞ V ar[
√
TgT (θ)]−1 =

Ω(θ) and Ω = Ω(θ0) (see Hansen (1982) and Newey and McFadden (1994)).1

Let ∇θg(z, θ) = ∂g(z, θ)/∂θ> be the m × p Jacobian matrix of g(z, θ),

G(θ) = E[∇θg(z, θ)] and GT (θ) = 1
T

∑T
t=1∇θg(zt, θ). Define the counterpart

of the (pseudo) score as qT (θ) = −GT (θ)Ω−1
T (θ)gT (θ), and qj,T (θ) the pj × 1

subvector. Also, let B(θ) = G(θ)>Ω−1(θ)G(θ), BT (θ) = GT (θ)>Ω−1
T (θ)GT (θ)

and B = B(θ0).

Consider two potentially nonlinear sets of r1 + r2 = r restrictions,

1This can be extended to the continuous updating estimator of Hansen, Heaton
and Yaron (1996). For instance, by a two-step GMM procedure where ΩT =
1
T (
∑T

t=1 g(zt, θ̃T )g(zt, θ̃T )>)−1 and θ̃T is any first-step
√
T -consistent estimator of θ0

(Newey and McFadden, 1994, p.2217).
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a(θ0) =

[
a1(θ0)
a2(θ0)

]
=

[
0r1
0r2

]
.

Define A(θ) = ∇θa(θ) and A = A(θ0), an r × p matrix of rank r and

consider the partition A(θ) = [∇θa1(θ)> ∇θa2(θ)>]> = [A1(θ)> A2(θ)>]>.

We are interested in the null hypothesis H1
0 : a1(θ0) = 0 against the local

alternative H1
A : a1(θ0) = d1/

√
T . The validity of a test for H1

0 will in general

depend on a second restriction, H2
0 : a2(θ0) = 0. When H2

A : a2(θ0) = d2/
√
T

holds the model is locally misspecified in the sense that a hypothesis that is

not under scrutiny is false in a local sense. For completeness, define the joint

null hypothesis H12
0 : a1(θ0) = 0, a2(θ0) = 0 and let d = [d>1 d>2 ]>.

In order to construct the tests we will make the following assumptions,

as in Newey and West (1987).

Assumptions: (i) The data {zt}Tt=1 are random vectors that are the first

T elements of a strictly stationary stochastic process {zt}∞t=1 and has a mea-

surable joint density function f(z1, ..., zT , θ) with respect to a measure ΠT
t=1ν,

where ν is a σ-finite measure on Rk.

(ii) For each θ ∈ Θ ⊂ Rp, the elements of g(z, θ) are measurable in z and∫
g(z, θ)f(z, θ)dν = 0.

(iii) The vector g(z, θ) is continuously differentiable on Θ, almost everywhere

ν, and a(θ) is continuously differentiable on Θ. For each positive integer

n ≥ 2 the joint density f(z1, zn, θ) is continuous in θ almost everywhere
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ν × ν. Also θ0 ∈ int(Θ) where Θ is compact.

(iv) There exist measurable functions h1(z) and h2(z), and c > 1, such that

almost everywhere ν, and for all θ ∈ Θ and n ≥ 2,

|g(z, θ)|4 ≤ h1(z), |∂g(z, θ)/∂θ|2 ≤ h1(z),

f(z, θ) ≤ h2(z), f(z1, zn, θ) ≤ h2(z1)h2(zn),

∫
[γ1(z)]ch2(z)dν < +∞,

∫
h2(z)dν < +∞.

(v) There exist constants C, ε > 0 such that either, (a) for all θ ∈ Θ, {zt}∞t=1

is uniform mixing with φ(n) ≤ Cn−ε, ε ≥ max{2, c/(c − 1)}, (b) for all

θ ∈ Θ, {zt}∞t=1 is strong mixing with α(n) ≤ Cn−ε, ε ≥ max{2, c/(c− 1)}.

(vi) For all θ ∈ Θ, E[g(z, θ)] = 0 only if θ = θ0. Also G has rank p, the

asymptotic covariance matrix of
√
TgT (θ0) is nonsingular, and A has rank r.

Let the unconstrained GMM estimator be

θ̂T = argmax
θ∈Θ

QT (θ).

The assumptions and the results in Newey and West (1987) guarantees that

θ̂T is consistent and asymptotically normal.

A joint test for H12
0 can be constructed based the unconstrained estima-

tor, using a Wald test as a simple application of the delta method. Fol-
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lowing Newey and McFadden (1994, p.2220) and the application to time-

series data in Newey and West (1987), under H1
A and H2

A,
√
T a(θ̂T ) = d +

AB−1GΩ−1/2N+op(1) whereN ∼ N (0m, Im), so
√
T a(θ̂T )

d→ N (d,AB−1A>)

as T →∞. In a similar way, a marginal test for H1
0 can be constructed with-

out reference to a2 from
√
T a1(θ̂T )

d→ N (d1, Va1) as T → ∞ where Va1 is

the asymptotic variance-covariance of
√
Ta1(θ̂T ).

Define the constrained GMM estimator as

(θ̄T , λ̄T ) = argmax
θ∈Θ,λ∈Rr

QT (θ)− a(θ)>λ,

where λ is the vector of Lagrange multipliers.

The first-order condition (FOC) is[
0
0

]
=

[
qT (θ̄T )− A(θ̄T )>λ̄T

a(θ̄T )

]
.

Consider the results in Newey and MacFadden (1994, p.2220) under H1
A

and H2
A,[ √

T (θ̄T − θ0)√
T λ̄T

]
=

[
−B−1A>(AB−1A>)−1

(AB−1A>)−1

]
d+

[
B−1/2MB−1/2

(AB−1A>)−1AB−1

]
G>Ω−1/2N+op(1),

where M = I−B−1/2A>(AB−1/2A>)−1AB−1/2 is a p×p matrix of rank p−r,

and N ∼ N (0m, Im).

Define Γ = (AB−1A>)−1 = [Γ>1 Γ>2 ]>, an r × r matrix, and

Π = (AB−1A>)−1AB−1G>Ω−1/2 = [Π>1 Π>2 ]>,

an r×m matrix. Partition of Γ1 and Γ2 into the components that correspond

to d1 and d2, such that:
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[ √
T λ̄1T√
T λ̄2T

]
=

[
Γ11d1 + Γ12d2

Γ21d1 + Γ22d2

]
+

[
Π1

Π2

]
N + op(1).

This shows that unless Γ12 = 0, a marginal LM tests for H1
0 will be

contaminated by the validity of H2
0 . This result can be seen as an extension

of the results in Davidson and MacKinnon (1987) and Saikkonen (1989) to

a GMM framework with general non-linear restrictions.

3 Robust LM test with non-linear hypothesis

Note that d2 can be written as

d̄2T = (Ir2 − Γ22)−1(
√
T λ̄2T − Γ21d1 − Π2N ) + op(1).

Then a robust tests for H1
0 that is valid for either H2

0 or H2
A, can be con-

structed from

√
T λ̄1T − Γ12d̄2T = Γ11d1 + Π1 N + op(1),

such that

√
T
(
λ̄1T − Γ12(I − Γ22)−1λ̄2T

)
= (Γ11 + Γ12(Ir2 − Γ22)−1Γ21)d1

+(Π1 + Γ12(Ir2 − Γ22)−1Π2)N + op(1).

In particular, a LM test for H1
0 that is robust to local misspecification in

H2
0 can be constructed as

Sa1(a2)(λ) =
√
T (Γ11 + Γ12(Ir2 − Γ22)−1Γ21)−1

(
λ1 − Γ12(I − Γ22)−1λ2

)
,
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with

Sλa1(a2)(λ̄T )
d→ N (d1, V ),

where V = (Γ11 + Γ12(Ir2 − Γ22)−1Γ21)−1(Π1 + Γ12(Ir2 − Γ22)−1Π2)(Π1 +

Γ12(Ir2 − Γ22)−1Π2)>(Γ11 + Γ12(Ir2 − Γ22)−1Γ21)−1.

Also note that the FOC’s of the constrained problem, qT (θ̄T )−A(θ̄T )>λ̄T =

0, imply that λ̄T = (A(θ̄T )>)−qT (θ̄T ) where ‘−’ denotes the generalized in-

verse of a matrix. Then Sθa1(a2)(θ̄T ) ≡ Sλa1(a2)(λ̄T ) is based on the restricted

estimator without using the Lagrange multipliers. This transformation has

the advantage that in many cases the restricted model is computationally

simpler than solving the constrained maximization.

Finally, the LM statistic for H1
0 that is robust to local misspecification in

H2
0 will be:

LMa1(a2)(θ) ≡ Sθa1(a2)(θ)
>V −1Sθa1(a2)(θ). (2)

The following theorem summarizes the above results.

Theorem 1. Under Assumption 1 and under H1
A and H2

A

LMa1(a2)(θ̄T )
d→ χ2

r1
(d>1 V d1)

as T → ∞ where d>1 V d1 is the noncentrality parameter and V = (Γ11 +

Γ12(Ir2−Γ22)−1Γ21)−1(Π1+Γ12(Ir2−Γ22)−1Π2)(Π1+Γ12(Ir2−Γ22)−1Π2)>(Γ11+

Γ12(Ir2 − Γ22)−1Γ21)−1.
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Remark 1. Note that in the case that a2(θ0) = 0r2 can be safely assumed,

LMa1(θ̄T )
d→ χ2

r1
(d>1 V1d1),

where V1 = Γ−1
11 Π1Π>1 Γ−1

11 .

Remark 2. In the case where a(θ) is composed of hypothesis tests of single

parameters, i.e. a1(θ) = θ1 and a2(θ) = θ2, then LMa1(a2)(θ̄T ) is equivalent

to the LM robust test for specification testing in Bera, Montes-Rojas and

Sosa-Escudero (2010). In order to verify this note that A1 and A2 become

vectors with 1s in the corresponding parameter components and 0 otherwise.

Moreover, λ̄1T = q1T (θ̄T ) and λ̄2T = q2T (θ̄T ). Then, the tests correspond to a

pseudo-LM test. In fact, if the model is based on a likelihood framework and

q are score functions, then the pseudo-scores become scores and the tests are

in fact Bera and Yoon (1993) specification tests.

4 Empirical application: Testing the rational

expectations hypothesis

The Mishkin approach

One of the most widely discussed theories in macroeconomics has been the

macro rational expectations (RE) hypothesis. This hypothesis, which is due

mainly to Lucas (1973), implies that anticipated changes in aggregate de-

mand (e.g., monetary policy) will be incorporated into the economic agents’

behavior and will have no effect on real economic activity. Mishkin (1982a,1982b)

12



interprets that the RE implies that the anticipations of aggregate demand

will be formed optimally, using all available information. This view became

the focus of much empirical investigation.

Since the RE proposition is very controversial, it requires a thorough em-

pirical investigation using a wide range of econometric techniques. Mishkin

(1982a,1982b) proposes a feasible statistical and economic model to test for

RE.

The basic model consists of a forecasting equation (we use the notation

in those papers)

Xt = Ztγ + ut, (3)

and an output equation

yt = y∗t +

N1∑
j=0

βj(Xt−j − Zt−jγ∗) +

N2∑
j=0

δjZt−jγ
∗ + et, (4)

where Xt is an aggregate demand policy variable (e.g., monetary aggregate),

Zt a vector of macro variables used to forecastXt that are available at time t−

1, yt a real output variable, y∗t natural level of real output, (ut, et) error terms

that are assumed to be uncorrelated with any element of the information

set available at time t − 1, and {βj}N1
j=0, {δj}N2

j=0, γ and γ∗ are unknown

parameters.

Mishkin’s model contains in fact two macro assumptions rather than one,

that is, RE: γ = γ∗ and neutrality (NE), δj = 0,∀j, which could be stated
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as the null effect of anticipated changes in aggregate demand policy because

economic agents have already take this into account. Mishkin and later

Bohara (1991) produce tests for the joint hypothesis of RE and NE, and

then marginal tests for RE assuming NE is not necessarily satisfied, but

tests for NE assuming RE is satisfied (Mishkin, 1982a, p.26; Mishkin, 1982a,

p.791). Mishkin and Bohara both find that the RE hypothesis cannot be

rejected, but there is strong support against the NE hypothesis.

In particular, Bohara (1991), following Mishkin (1982a,1982b), proposes

a model for which Xt = mt, the log of the first difference of M2, Zt =

(mt−1, rt−1, rt−2, rt−3) where rt is the log of the first difference of the Treasury

bill rate. Then, the forecasting equation becomes (Bohara, 1991, p.338, eq.

(2))

mt = γ0 + γ1mt−1 + γ2rt−1 + γ3rt−2 + γ4rt−3 + ut. (5)

Consider then the case of N1 = N2 = 1 such that (Bohara, 1991, p.338, eq.

(3))

yt = y∗t + β0mt + β1mt−1− β0Ztγ
∗− β1Zt−1γ

∗ + δ0Ztγ
∗ + δ1Zt−1γ

∗ + et. (6)

Furthermore assume that y∗t = φ0 + φ1yt−1 + φ2yt−2. In turn this produces a

two-equation structural VAR (Bohara, 1991, p.338, eq. (5)),
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[
mt

yt

]
=

[
γ0

φ0

]
+

[
γ1 γ2 0

γ1β0 + (β1 − β0γ
∗
1 + δ1γ

∗
1) γ2β0 + (−β0γ

∗
2 + δ0γ

∗
2) φ1

] mt−1

rt−1

yt−1

+

[
0 γ3 0

(−β1γ
∗
1 + δ1γ

∗
1) γ3β0 + (−β0γ

∗
3 − β1γ

∗
2 + δ0γ

∗
3 + δ1γ

∗
2) φ2

] mt−2

rt−2

yt−2

+

[
0 γ4 0
0 γ4β0 + (−β0γ

∗
4 − β1γ

∗
3 + δ0γ

∗
4 + δ1γ

∗
3) 0

] mt−3

rt−3

yt−3

+

[
0 0 0
0 (−β1γ

∗
4 + δ1γ

∗
4) 0

] mt−4

rt−4

yt−4

+

[
ut
et

]
, (7)

where (ut, et) are white noise.

The null hypothesis of RE involves HRE
0 : γ1 = γ∗1 , γ2 = γ∗2 , γ3 = γ∗3 , γ4 =

γ∗4 , and that of NE, HNE
0 : δ0 = 0, δ1 = 0. Bohara (1991) considers the nonlin-

ear restrictions that would appear in the restricted VAR under HRE
0 &HNE

0 ,

given by

[
mt

yt

]
=

[
γ0

φ0

]
+

[
γ1 γ2 0
β1 0 φ1

] mt−1

rt−1

yt−1

+

[
0 γ3 0

−β1γ1 −β1γ2 φ2

] mt−2

rt−2

yt−2

+

[
0 γ4 0
0 −β1γ3 0

] mt−3

rt−3

yt−3

+

[
0 0 0
0 −β1γ4 0

] mt−4

rt−4

yt−4

+

[
ut
et

]
. (8)

Then he proposes an unrestricted VAR of the form
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[
mt

yt

]
=

[
θ01

θ02

]
+

[
θ1,11 θ1,12 0
θ1,21 θ1,22 θ1,23

] mt−1

rt−1

yt−1

+

[
0 θ2,12 0
θ2,21 θ2,22 θ2,23

] mt−2

rt−2

yt−2

+

[
0 θ3,12 0
0 θ3,22 0

] mt−3

rt−3

yt−3

+

[
0 0 0
0 θ4,22 0

] mt−4

rt−4

yt−4

+

[
ut
et

]
, (9)

and tests for the following nonlinear restrictions2 being zero:

RENE1 : θ2,21 + θ1,11θ1,21 =

−β1γ
∗
1 + δ1γ

∗
1 + γ1{γ1β0 + (β1 − β0γ

∗
1 + δ1γ

∗
1)} =

(β1 + γ1β0)(γ1 − γ∗1)︸ ︷︷ ︸
RE

+ γ∗1(1 + γ1)δ1︸ ︷︷ ︸
NE

= 0,

RENE2 : θ2,22 + θ1,12θ1,21 =

γ3β0 + (−β0γ
∗
3 − β1γ

∗
2 + δ0γ

∗
3 + δ1γ

∗
2) + γ2{γ1β0 + (β1 − β0γ

∗
1 + δ1γ

∗
1)} =

γ2β0(γ1 − γ∗1) + β1(γ2 − γ∗2) + β0(γ3 − γ∗3)︸ ︷︷ ︸
RE

+ γ∗3δ0 + (γ∗2 + γ2γ
∗
1)δ1︸ ︷︷ ︸

NE

= 0,

RENE3 : θ3,22 + θ2,12θ1,21 =

γ4β0 + (−β0γ
∗
4 − β1γ

∗
3 + δ0γ

∗
4 + δ1γ

∗
3) + γ3{γ1β0 + (β1 − β0γ

∗
1 + δ1γ

∗
1)} =

γ3β0(γ1 − γ∗1) + β1(γ3 − γ∗3) + β0(γ4 − γ∗4)︸ ︷︷ ︸
RE

+ (γ∗3 + γ∗1γ3)δ1︸ ︷︷ ︸
NE

= 0,

2Note that there are 16 parameters in eq. (7) but only 14 in eq. (9). As such it would
not be possible to estimate the parameters first and then to construct Wald-type tests
unless additional restrictions are made.
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RENE4 : θ4,22 + θ3,12θ1,21 =

(−β1γ
∗
4 + δ1γ

∗
4) + γ4{γ1β0 + (β1 − β0γ

∗
1 + δ1γ

∗
1)} =

γ4β0(γ1 − γ∗1) + β1(γ4 − γ∗4)︸ ︷︷ ︸
RE

+ (γ∗4 + γ∗1γ4)δ1︸ ︷︷ ︸
NE

= 0.

To these we could add another simple one

RENE5 : θ1,22 = β0(γ2 − γ∗2)︸ ︷︷ ︸
RE

+ γ∗2δ0︸︷︷︸
NE

= 0.

Robust tests

The main issue here is how to construct tests for RE and NE, separately, and

that are robust to the presence of the other. Note that not all parameters

in each set of hypotheses can be separated from each other. In fact, all of

the above equations involve both RE and NE. Note, for instance, that in all

cases we have both δ1 and (γ1−γ∗1), and as such, deviations from one cannot

be separated form the other. The same occurs with δ0 and (γ2 − γ∗2). As

described below, the proposed methodology allows for a test for RE that is

robust to the (local) validity of NE.

Our proposed strategy is to estimate the restricted VAR model (8) un-

der the joint null HRE&NE
0 , and then to make tests for HRE

0 under local

misspecification in HNE
0 . In particular, we can make the following tests for

RE:
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1. HRE1
0 : γ3 = γ∗3 . This could be done by considering RENE2 (involving

γ1 = γ∗1 , γ2 = γ∗2 , γ3 = γ∗3 , δ0 = 0, δ1 = 0) and local misspecification

in RENE1 (involving γ1 = γ∗1 , δ1 = 0) and RENE5 (involving γ2 =

γ∗2 , δ0 = 0).

2. HRE2
0 : γ4 = γ∗4 . This could be done by considering RENE4 (involv-

ing γ1 = γ∗1 , γ4 = γ∗4 , δ1 = 0) and local misspecification in RENE1

(involving γ1 = γ∗1 , δ1 = 0).

3. HRE3
0 : γ3 = γ∗3&γ4 = γ∗4 . This could be done by considering RENE3

(involving γ1 = γ∗1 , γ3 = γ∗3 , γ4 = γ∗4 , δ1 = 0) and local misspecification

in RENE1 (involving γ1 = γ∗1 , δ1 = 0).

Note that these does not require to assume NE, but rather they allow for

local misspecification in NE. This is an alternative test for RE that illustrates

the proposed robust testing strategy.

The tests are constructed as follows.

The GMM model can be constructed from the exogeneity assumptions

from VAR model (9). In this case

θ = [θ01 θ1,11 θ1,12 θ2,12 θ3,12 θ02 θ1,21 θ1,22 θ1,23 θ2,21 θ2,22 θ2,23 θ3,22 θ4,22]>.

Define ut(θ) = mt − (θ01 + θ1,11mt−1 + θ1,12rt−1 + θ2,12rt−2 + θ3,12rt−3) and

et(θ) = yt−(θ02 + θ1,21mt−1 + θ1,22rt−1 + θ1,23yt−1 + θ2,21mt−2 + θ2,22rt−2 + θ2,23yt−2+

θ3,22rt−3 + θ4,22rt−4). Then define the gt(θ) estimating functions as
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g01,t(θ) = ut(θ), g1,11,t(θ) = mt−1ut(θ), g1,12,t(θ) = rt−1ut(θ),

g2,12,t(θ) = rt−2ut(θ), g3,12,t(θ) = rt−3ut(θ),

g02,t(θ) = et(θ), g1,21,t(θ) = mt−1et(θ), g1,22,t(θ) = rt−1et(θ),

g1,23,t(θ) = yt−1et(θ), g2,21,t(θ) = mt−2et(θ), g2,22,t(θ) = rt−2et(θ),

g2,23,t(θ) = yt−2et(θ), g3,22,t(θ) = rt−3et(θ), g4,22,t(θ) = rt−4et(θ).

For this model m = p = 14. Let ΩT (θ) = 1/T
∑

t=1 gt(θ)gt(θ)
> and

construct gT (θ) and GT (θ) as above.

Note that under HRE&NE
0 , model (8) can be easily estimated by first

running an OLS model using eq. (5) to get (γ̄0T , γ̄1T , γ̄2T , γ̄3T , γ̄4T ), and then

to run a second OLS model,

yt = φ0 + φ1yt−1 + φ2yt−2

+β0(mt − γ̄1Tmt−1 − γ̄2T rt−1 − γ̄3T rt−2 − γ̄4T rt−3)

+β1(mt−1 − γ̄1Tmt−2 − γ̄2T rt−2 − γ̄3T rt−3 − γ̄4T rt−4) + et,

to obtain (φ̄0T , φ̄1T , φ̄2T , β̄0T , β̄1T ). These are then used to construct θ̄T , the

set of parameter estimates in the unrestricted VAR model (9).

The tests can then be constructed based on defining the nonlinear restric-

tions a1(θ) and a2(θ):

- ForHRE1
0 define a1(θ) = θ2,22+θ1,12θ1,21 and a2(θ) =

[
θ2,21 + θ1,11θ1,21

θ1,22

]
.
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- For HRE2
0 define a1(θ) = θ4,22 + θ3,12θ1,21 and a2(θ) = θ2,21 + θ1,11θ1,21.

- For HRE3
0 define a1(θ) = θ3,22 + θ2,12θ1,21 and a2(θ) = θ2,21 + θ1,11θ1,21.

From these LMa1(a2)(θ̄T ) can be constructed in each case.

Data, constrained parameter estimates and test results

Table 1 presents the regression estimates of the forecasting and output equa-

tions. The data corresponds to that outlined by Bohara (1991), with the

series extended to 2015.

We consider first the individual LM tests for the hypotheses RENE1-

RENE5 in Table 2. The tests are constructed for the 1959-1986 and 1959-

2015 subsamples. In both subsamples the tests show that the RENE1 is

rejected, but we cannot reject any of the remaining RENE2-RENE5 hy-

potheses. This determines that either γ1 6= γ∗1 or δ1 6= 0.

Table 3 reports the LM robust tests for RE1-RE3. In this case, the results

point that γ∗3 = γ3 in RE1 cannot be rejected, but there is some evidence

that γ∗4 6= γ4 in RE2 for the 1959-1986 subsample and marginal evidence for

1959-2015. RE3 offers clear rejections of the null hypothesis in both cases.

Exploring these results might reveal that it is likely that both γ parameters

do not satisfy the RE restriction. This is due to the statistical significance of

the parameter estimates in the reduced form estimates under the joint null.

In particular, the results indicate that β0 is not statistically different from

zero, while β1 is. RE1 is based on RENE2, where (γ3−γ∗3) is multiplied by β0,
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which is not significant in any subsample in Table 1. However, RE2 (based

on RENE4) has β1 multiplied by (γ4 − γ∗4), while RE3 (based on RENE3)

has β1 multiplied by (γ3 − γ∗3).

In summary, our developed methodology reveals that we are able to reject

the RE hypothesis, while the previous work by Bohara and Mishkin agreed

on its validity.

5 Conclusion

This paper extends the Bera and Yoon (1993) testing LM robust strategy

to time-series dependent data and general linear and nonlinear functions for

the hypothesis of interest and locally misspecified alternatives. The tests are

asymptotically chi-squared with degrees of freedom given by the dimensions

of the null hypothesis of interest, and with noncentrality parameter that

correspond to the null of interest and not to the misspecified alternative.

The possibility of using linear and nonlinear functions multiplies the num-

ber of potential applications. As an example......

Extensions....
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Table 1: Parameter estimates

Forecasting equation Output equation
1959-1986 1959-2015 1959-1986 1959-2015

γ̄0T .0125*** .0071*** φ̄0T .0053*** .0040***
(.0018) (.0010) (.0014) (.0008)

γ̄1T .4011*** .5741*** φ̄1T .2554*** .2635***
(.0084) (.0560) (.0942) (.0655)

γ̄2T -.0201*** -.0029 φ̄2T .1247 .1987***
(.0046) (.0020) (.0942) (.0655)

γ̄3T -.0050 .0035* β̄0T -.0092 .0256
(.0048) (.0020) (.1451) (.0756)

γ̄4T -.0096** -.0010 β̄1T .3793*** .2052***
(.0047) (.0020) (.1451) (-0754)

Notes: OLS estimates. Standard OLS standard errors in parentheses. *
Significant at 10%. ** Significant at 5%. * Significant at 10%.
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Table 2: LM standard tests

1959-1986 1959-2015
RENE1

LM stat 281.6962 8.0091
p-value [.0000] [.0047]

RENE2
LM stat .0890 .1496
p-value [.7654] [.6989]

RENE3
LM stat .6276 .0917
p-value [.4282] [.7621]

RENE4
LM stat 1.5624 .2458
p-value [.2113] [.6200]

RENE5
LM stat 2.2464 .0633
p-value [.1339] [.8013]

Notes: All statistics are central chi-squared with 1 degree of freedom under
the null hypothesis.

Table 3: LM robust tests

1959-1986 1959-2015
RE1: γ3 = γ∗3

LM stat 2.0907 .1276
p-value [.1482] [.7209]

RE2: γ4 = γ∗4
LM stat 6.0695 2.6152
p-value [.0138] [.1058]

RE3: γ3 = γ∗3&γ4 = γ∗4
LM stat 3.7667 6.3475
p-value [.0523] [.0118]

Notes: All statistics are central chi-squared with 1 deree of freedom under
the null hypothesis.
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