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Abstract

We study strategy-proof allocation rules in economies with a social endowment of

perfectly divisible commodities and multidimensional single-peaked preferences. Us-

ing the property of replacement monotonicity, we: (i) establish sufficient conditions

for a rule to be Pareto dominant strategy-proof; (ii) present a multidimensional ver-

sion of the sequential rules introduced by Barberà, Jackson and Neme [6] and show

that they also are Pareto dominant strategy-proof; and (iii) give a new characteri-

zation of the multidimensional uniform rule with this notion of Pareto domination.

These results generalize previous work of Anno and Sasaki [4], that only applies to

the two-agent case.

Resumen

Estudiamos reglas de asignación no manipulables en economı́as con una dotación

social compuesta de bienes perfectamente divisibles y preferencias unimodales mul-

tidimensionales. Usando la propiedad de monotońıa en reemplazos: (i) establecemos

condiciones para que una regla sea Pareto dominante entre reglas no manipulables;

(ii) presentamos una extensión multidimensional de las reglas secuenciales intro-

ducidas por Barberà, Jackson y Neme [6] y mostramos que estas reglas también son

Pareto dominantes entre reglas no manipulables; y (iii) damos una nueva caracteri-

zación de la regla uniforme multidimensional que utiliza esta noción de dominación

de Pareto. Estos resultados generalizan trabajo previo de Anno y Sasaki [4], que

sólo considera economı́as de dos agentes.
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1 Introduction

The literature on strategy-proofness on specific economic environments, in contradistinc-

tion to abstract public goods common in social choice theory, begins with the pioneering

work of Hurwicz [13]. In private goods contexts, Hurwicz considers a class of two-good

two-agent economies with individual endowments and classical preferences and shows that

no rule is strategy-proof (which means that the rule selects allocation in such a way that

no agent ever benefits from lying about his preference relation), efficient (which means

that the rule selects an allocation such that no other allocation pareto dominates it), and

individually rational (which means that, for each economy, a rule assigns to each agent a

bundle that he finds at least as desirable as his endowment). Dasgupta, Hammond and

Maskin [10] and Zhou [23] generalize this result weakening individual rationality and then

Serizawa [21] extends it to economies with several goods and several agents.1

Similar results were obtained in economies with a social endowment and more re-

stricted preference domains, in which it is shown that strategy-proof and efficient rules

are dictatorial (the requirement that there be no agent who receives everything for each

economy). For example, such statement holds in two-agent economies with homothetic or

linear preferences (Schummer [20]), with constant elasticity of substitution preferences (Ju

[14]) or with quasi-linear preferences (Goswami et al [12]). Recent results in economies

with several agents are presented by Momi [15]. Cho and Thomson [9] find that, in

economies with more than two agents and linear preferences, no rule is strategy-proof,

efficient and equally treating (which means that the rule should assign indifferent bundles

to agents with the same preferences). These results show that one of the cornerstones of

social choice theory, the celebrated Gibbard-Satterhwaite Theorem (Gibbard [11], Satter-

hwaite [19]), still holds in private good economic environments, where alternative sets are

endowed with a variety of mathematical structures and, therefore, admissible preference

relations are restrained considerably.2 The Gibbard-Satterthwaite Theorem essentially

says that, with public goods, every strategy-proof rule is dictatorial on the universal

domain, i. e., when all preferences are admissible.3

We study economies with a social endowment of perfectly divisible commodities and

multidimensional single-peaked preferences defined over those commodities. These pref-

erences fulfill the following requirement: for each of the goods in the economy, keeping

fixed the level of consumption of the other goods, an increase in an agent’s consumption

raises his welfare up to some critical level; beyond that level, the opposite holds. The

importance of the single-peaked preferences domain comes from the facts that: (i) under

1A related result is established by Cho [8]. He introduces, for δ ∈ [0, 1], the properties of δ-strategy-

proofness and δ-efficiency. These parametrizations are equivalent to the original properties when δ =

1 and weaken monotonically, eventually to a vacuous requirement when δ = 0. His principal result

establishes that, in two-agent economies defined on a domain containing linear preferences, for each

δ ∈ (0, 1], no rule is: (i) strategy-proof, δ-efficient and individually rational, and (ii) δ-strategy-proof,

efficient and individually rational.
2An important exception is the domain of preferences representable by Leontief-type utility functions,

in which there are strategy-proof and efficient rules that are not dictatorial (Nicoló [18]).
3Notice, however, that when we restrict ourselves to the domain of single-peaked preferences, the

family of median voter rules are strategy-proof, efficient and anonymous (which means that the rule is

invariant with respect to the names of the agents) (See Moulin [17]).
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some regularity conditions,4 this domain generalizes the one of classical preferences, and

(ii) several interpretations of the model can be made in different applications.

One of those applications is the study of general (dis)equilibrium models, as in Bénassy

[7]. Consider an exchange economy with classical preferences where goods are assigned

through the price mechanism (Walrasian rule), but assume that prices are not in equi-

librium, either because of an exogenous shock or because they are kept fixed in order to

fulfill some social goal. When the distribution is made, not every agent can maximize his

preferences within his budget set, so the implementation of a rationing scheme is needed.

Notice, however, that if the preferences of the agents are strictly convex, their restriction

to the boundary of their budget set will be multidimensional single-peaked.

Another application consists of imagining a group of partially altruist agents who

have to divide among them a bundle of goods. Each agents cares about what he gets

but also cares about what everyone else gets. A natural specification of the preferences

of an agent in this context can be as follows: (i) when the agents consumes little he

pays more attention to himself, meaning by this that an increase in his own consumption

improves his welfare, and (ii) as his consumption increases, however, the agent gives more

priority to the consumption of the rest. At some point, his interest for the other agents

can dominate his private consumption and its increase may worsen his welfare. This

preferences, therefore, are also multidimensional single-peaked.

The starting point in the literature on private good economies and single-peaked pref-

erences is the work of Sprumont [22], in which the allocation of one perfectly divisible

good is studied. In contrast with the impossibility results obtained in economies with

classical preferences, non trivial strategy-proof and efficient rules exist in this case. The

class of strategy-proof and efficient rules is very large, as shown by Barberà, Jackson

and Neme [6]. They study rules that allow for an asymmetric treatment of the agents,

generalizing the uniform rule, and characterize the family of sequential rules as the only

strategy-proof and efficient rules that also fulfill the property of replacement monotonic-

ity. This last property can be seen as a strong notion of solidarity, and requires that,

when the preferences of an agent change (in a non-disruptive way) the welfare of the rest

of the agents is affected in the same direction.

The study of allocation rules in economies with several goods and multidimensional

single-peaked preferences begins with Amorós [3]. He shows that, as in classical economies,

the combination of strategy-proofness and efficiency es troublesome: every rule satisfying

both properties is also dictatorial, even in two-agent economies. Therefore, if we want to

study strategy-proof rules, we need a weaker notion of efficiency.

Anno and Sasaki [4] study which rules are “the most efficient ones” in the class of

strategy-proof rules, by means of a notion of domination between rules. Their main result

states that, in two-agent economies, the multidimensional uniform rule is the only Pareto

dominat strategy-proof rule that also fulfills equal treatment.

The goal of this paper is threefold: (i) to establish sufficient conditions for a rule to be

Pareto dominant strategy-proof; (ii) to present a multidimensional version of the sequential

rules introduced by Barberà, Jackson and Neme [6] and show that they also are Pareto

4Basically, continuity and strict convexity.
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dominant strategy-proof; and (iii) to give a new characterization of the multidimensional

uniform rule with this notion of Pareto domination. These results generalize previous

work of Anno and Sasaki [4], that only applies to the two-agent case.

The paper is organized as follows. In Section 2 we introduce the model, the properties

we will analyze and a general impossibility theorem. The Pareto dominant strategy-proof

rules are introduced and some related results presented in Section 3. The multidimen-

sional sequential rules and the multidimensional uniform rule are analyzed in Sections 4

and 5, respectively. Finally, some comments are gathered in Section 6.

2 Model, properties and preliminary results

Let L ≡ {1, . . . , l} be the set of goods. For each ` ∈ L, there is an amount Ω` ∈ R+

to allocate. Let Ω ≡ (Ω1, . . . ,Ωl) ∈ RL
+ be the social endowment. The consumption set

is then X ≡
∏

L[0,Ω`]. Let N ≡ {1, . . . , n} be the set of agents. Each agent i ∈ N

has a preference relation which is complete, transitive, continuous and strictly convex Ri

defined on X. Denote the strict and indifference relations associated to Ri by Pi and Ii,

respectively. In general, we denote a domain of preferences byR. A profile of preferences

is a listR ≡ (R1, . . . , Rn) ∈ RN . Given a profile R ∈ RN and an agent i ∈ N, the notation

R−i refers to the list of preferences of all the agents except agent i. We will use a similar

notation replacing i with a set of agents S ⊂ N. An economy is a pair (R,Ω) ∈ RN×RL
+.

A (feasible) allocation is a list x ≡ (x1, . . . , xn) ∈ XN such that
∑

N xi = Ω. Let Z

be the set of feasible allocations. An (allocation) rule, denoted by ϕ, is a function

from RN to Z. Throughout this paper we will kept fixed the social endowment Ω ∈ RL
+.

Therefore, an economy will simply be represented by a profile of preferences R ∈ RN .

Definition 1 A preference Ri is multidimensional single-peaked if there is a p(Ri) ∈ X
such that, for each pair xi, x

′
i ∈ X with xi 6= x′i, whenever for each ` ∈ L, either x′i` ≤

xi` ≤ p`(Ri) or p`(Ri) ≤ xi` ≤ x′i`, we have xi Pi x
′
i.

From now on R stands for the domain of multidimensional single-peaked preferences.

Remark 1 The domain of classical preferences, i.e., preferences satisfying monotonicity,

continuity and strict convexity, is a subdomain of R.

Figure 1 shows a typical preference from R, while Figure 2 show two preferences which

are not multidimensional single-peaked.

Next we present the properties of strategy-proofness, efficiency and equal treatment.

The first one limits the strategic behavior of the agents by requiring that none of them

can manipulate the rule declaring false preferences:

Strategy-proofness: For each R ∈ RN , each i ∈ N, and each R′i ∈ R, we have

ϕi(R) Ri ϕi(R
′
i, R−i).

The next property requires that, for each economy, a rule select an allocation such

that no other allocation Pareto dominates it.
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Figure 1: Preferences belonging to the domain R.

Figure 2: Preferences that do not belong to the domain R. Preferences on the left are not

convex. The ones on the right are not separable.

5



Efficiency: For each R ∈ R, there is no x′ ∈ Z such that, for each i ∈ N, x′i Ri ϕi(R),

and for some j ∈ N, x′j Pj ϕj(R).

The following property establishes that two agents with the same preferences must

receive indifferent allocations.

Equal treatment: For each R ∈ RN and each {i, j} ⊂ N, if Ri = Rj then ϕi(R) Ii ϕj(R).

In the domain of classical, homothetic and smooth preferences, Serizawa [21] shows that

these three properties are incompatible. Let Rcl be the domain of classical, homothetic

and smooth preferences.5

Theorem 1 (Serizawa, 2002) No rule defined onRN
cl is strategy-proof, efficient and equally-

treating.

The next theorem hows that the imposibility result extends tho the context of multi-

dimensional single-peaked preferences.

Theorem 2 No rule defined on RN is strategy-proof, efficient and equally-treating.

Proof. This is a straightforward consequence of the fact thatRcl ⊂ R. Let ϕ be a strategy-

proof, efficient and equally-treating rule defined on R. Sea ϕ̂ the restriction of ϕ to Rcl.

Then ϕ̂ is strategy-proof, efficient and equally-treating on Rcl. This contradicts Theorem

1. �

As strategy-proofness and efficiency are incompatible together with a fairness property

such as equal treatment, and since we are interested in studying strategy-proof rules, we

have to weaken efficiency. The following property does that (and is equivalent to efficiency

in one-good economies):

Same-sidedness: For each R ∈ RN and each ` ∈ L, (i) if
∑

N p`(Ri) ≥ Ω`, then for each

i ∈ N, ϕi`(R) ≤ p`(Ri); and (ii) if
∑

N p`(Ri) ≤ Ω`, then for each i ∈ N, ϕi`(R) ≥ p`(Ri).

Of course, every efficient rule is same-sided, but the converse is false.6 As we previously

commented, this property was used by Amorós [3] to characterize the multidimensional

version of the uniform rule as the only strategy-proof and equally treating rule that also

fulfills this weak efficiency notion.

An even weaker property says that when the sum of the peaks of each good is equal

to the social endowment of each good, then the rule must assign, for each agent and each

good, that peak amount.

5A preference relation Ri is homothetic if xiRiyi implies λxiRiλyi for each λ ∈ R+, and is smooth

if, for each xi ∈ X \ ∂X, there is a unique vector in the simplex {q ∈ RL
+ : ||q|| = 1} which supports the

upper contour set {yi ∈ X : yiRixi}.
6Define a rule in the following way: if the sum of the peaks is greater than zero, the rules assigns

proportionally with respect to the peaks; otherwise it assigns the egalitarian allocation. This rule is

same-sided. Consider a two-good, two-agent economy such that the peak amount of both agents equals

the social endowment and there es a feasible allocation that dominates the egalitarian allocation. In this

economy, the rule selects the egalitarian allocation. However, such allocation is not efficient.
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Unanimity: For each R ∈ RN , if for each ` ∈ L,
∑

N p`(Ri) = Ω`, then for each i ∈ N
and each ` ∈ L, ϕi`(R) = p`(Ri).

Clearly, every same-sided rule is unanimous, but the converse is false.7 This property can

be consider as a minimal requirement of efficiency.

Next we present two properties that will be fundamental for the results of this paper.

The first one establishes that, for each good, if the change in the preferences of one agent

does not decrease (increase) the amount assigned to that agent, then the amounts assigned

to the rest of the agents cannot increase (decrease).

Replacement monotonicity: For each R ∈ RN , each i ∈ N, each R′i ∈ R, and each

` ∈ L, (i) if ϕi`(R) ≤ ϕi`(R
′
i, R−i), then for each j ∈ N \ {i}, ϕj`(R) ≥ ϕj`(R

′
i, R−i); and

(ii) if ϕi`(R) ≥ ϕi`(R
′
i, R−i), then for each j ∈ N \ {i}, ϕj`(R) ≤ ϕj`(R

′
i, R−i).

The second property, introduced by Satterthwaite and Sonnenschein [?], has played an

important role in the development of the axiomatic study of resource allocation. It es-

tablishes that, if the change in the preferences of one agent does not change the amount

assigned to that agent, then nobody else’s assignment should change.

Non-bossiness: For each R ∈ RN , each i ∈ N, and each R′i ∈ R, if ϕi(R) = ϕi(R
′
i, R−i),

then ϕ(R) = ϕ(R′i, R−i).

Remark 2 Every replacement monotonic rule is non-bossy. When there are only two

agents, any rule satisfies trivially replacement monotonicity (and therefore non-bossiness).

Several different interpretations has been given to non-bossiness. From a strategic per-

spective, this property strengthens, in some models, the property of strategy-proofness to

group strategy-proofness8. From a normative perspective, the property has the advantage

of dismiss rules with certain “arbitrary” behavior.

With respect to replacement monotonicity, when there is only one good in the economy,

the property can be interpreted as a solidarity principle: the welfare of the agents must

be affected in the same direction before (non-disruptive) changes in the preferences of one

of them. Even though this idea is compelling to invoke the property, the most important

justification in models with several goods is a technical one: to give some structure to

classes of rules that on themselves are very difficult to describe, such the class of strategy-

proof rules.

3 Pareto dominant strategy-proof rules

Here we present a way to weaken the property of efficiency within the class of strategy-

proof rules. The idea is to select those rule which are undominated in the sense of Pareto.

Next we present the formal definitions. Let Φ denote the class of all the rules with domain

RN .
7Think of a rule which assigns the peaks when feasible but is constant otherwise.
8Strategy-proofness and non-bossiness imply group strategy-proofness, for example, in one-good

economies with single-peaked preferences. However, when there are several goods, this no longer holds.

The multidimensional uniform rule, which we present in Section AGREGAR is not group strateg-proof

(see Example 1). For a thorough account of the use of non-bossiness in the literature, see Thomson [?].
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Definition 2 Let ϕ and ψ be two rules in Φ. Then ϕ dom ψ if and only if for each

R ∈ RN and each i ∈ N, ϕi(R) Ri ψi(R).

Remark 3 The relation dom is a preorder, i.e., it is reflexive and transitive, but not

necessarily complete nor antisymmetric.9

The property of efficiency can be characterized in terms of the relation dom as follows:

Lemma 1 A rule ϕ ∈ Φ is efficient if and only if, for each ψ ∈ Φ such that ψ dom ϕ,

we have ϕ dom ψ.

Proof. (=⇒) Let ϕ ∈ Φ be an efficient rule and let ψ ∈ Φ be such that ψ dom ϕ.

Assume it is not the case that ϕ dom ψ. Then there are R ∈ RN and i ∈ N such that

ψi(R) Pi ϕi(R). Since ψj(R) Rj ϕj(R) for each j ∈ N \{i}, then ϕ is not efficient. Absurd.

(⇐=) Assume that for each ψ ∈ Φ such that ψ dom ϕ, we have ϕ dom ψ, and that ϕ

is not efficient. Then there are R′ ∈ RN and x ∈ Z such that, for each j ∈ N, we have

xj R
′
j ϕj(R

′) and there is i ∈ N such that xi P
′
i ϕi(R

′). Define the following rule:

ψ′(R) ≡
{
x si R = R′

ϕ(R) si R 6= R′,

Then ψ′ dom ϕ. However, ϕ does not dominate ψ′. �

This means that a rule ϕ is efficient whenever it is a maximal element of Φ preordered

by dom. Therefore, a way to weaken this property consists of constraining the set over

which the rule must be maximal. We will focus our analysis on the class of strategy-proof

rules that also fulfill the following informational simplicity property:

Own peak-onlyness: For each R ∈ RN , each i ∈ N, and each R′i ∈ R, if p(R′i) = p(Ri),

then ϕi(R) = ϕi(R
′
i, R−i).

Let Φ∗ denote the class of strategy-proof and own peak-only rules. We now present the

notion of efficiency among strategy-proof rules due to Anno and Sasaki [4].10

Definition 3 A rule ϕ ∈ Φ∗ is Pareto-dominant strategy-proof if, for each ψ ∈ Φ∗ such

that ψ dom ϕ, we have ϕ dom ψ.

Clearly, this property is implied by efficiency when the rule is strategy-proof. A more

demanding version of the property requires the rule to be a maximal element on Φ∗ with

respect to the preorder dom and that no other rule be welfare-equivalent to it.11

Definition 4 A rule ϕ ∈ Φ∗ is strongly Pareto-dominant strategy-proof if, for each

ψ ∈ Φ∗ such that ψ dom ϕ, we have ϕ = ψ.

9A binary relation ≺ defined on a set X is reflexive if, for each x ∈ X, we have x ≺ x; it is transitive

if, for each {x, y, z} ⊂ X, x ≺ y and y ≺ z imply x ≺ z; it is complete if, for each {x, y} ⊂ X, we have

x ≺ y or y ≺ x; and it is antisymmetric if, for each {x, y} ⊂ X, x ≺ y and y ≺ x imply x = y.
10Anno and Sasaki [4] named this property second-best efficiency. We prefer not to use this terminology.
11The rules ϕ and ψ are welfare-equivalent whenever ϕ dom ψ and ψ dom ϕ.
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Theorem 3 in Anno and Sasaki [4] establishes that, in two-agent economies (i.e., when

|N | = 2), every strategy-proof and same-sided rule is strongly Pareto-dominant strategy-

proof. The next theorem generalizes the aforementioned result to economies with an

arbitrary amount of agents.

Theorem 3 Let ϕ be a strategy-proof, unanimous and replacement monotonic rule.

Then ϕ is a strongly Pareto-dominant strategy-proof rule.

Proof. See the Appendix. �

Remark 4 Theorem 3 in Anno and Sasaki [4] is implied by Theorem 3 since: (i) by

Remark 2, when |N | = 2, replacement monotonicity is trivially satisfied by any rule; and

(ii) unanimity and replacement monotonicity imply same-sidedness (see Lemma 4 in the

Appendix).

4 Multidimensional sequential rules

In this section we study a multidimensional generalization of the sequential rules presented

in Barberá, Jackson y Neme [6]. The main result in that paper says that a rule is

sequential if and only if it is strategy-proof, same-sided and replacement monotonic (recall

that in one-good economies same-sidedness is equivalent to efficiency). We will build

multidimensional rules based on this one-dimensional rules. Given R ∈ RN , let π`(R)

be the projection of R onto the `-th good (which is, of course, a one-dimensional

single-peaked preference).

Multidimensional sequential rule, φ: For each R ∈ R and each i ∈ N,

φi(R) ≡ (φi`(π`(R)))`∈L ,

where, for each ` ∈ L, φ` = (φi`)i∈N is a one-dimensional strategy-proof, same-sided and

replacement monotonic rule.

Theorem 4 Every multidimensional sequential rule is strategy-proof, same-sided and

replacement monotonic.

Proof. See the Appendix. �

The following result is immediate consequence of Theorems 3 and 4.

Corollary 1 Every multidimensional sequential rule is strongly Pareto-dominant strategy-

proof.

The next property establishes that each agent must find his assignment at least as

desirable as the egalitarian allocation.

Egalitarian lower bound: For each R ∈ RN and each i ∈ N, ϕi(R) Ri
Ω
n
.

In the following we show how to construct multidimensional sequential rules that meet

the egalitarian lower bound. Given ` ∈ L, a one-dimensional sequential rule φ`

9



(Barberà, Jackson and Neme [6]) is defined through a sequential adjustment function12

g` : Z`× π`(RN)→ Z`× π`(RN) (that fulfills some requirements) and an initial reference

vector q∗` ∈ Z`, by means of the following relation:

φi`(π`(R)) ≡ qi`, where qi` comes from (qi`, π`(Ri)) = gn` (q∗` , π`(Ri)),

and gn` denotes the n-th iteration of g`. It is easy to see that, given a sequential adjustment

function g = (g`)`∈L, if we choose as reference vector the egalitarian allocation (this is,

if we take for each ` ∈ L, q∗` = Ω`

n
), the associated sequential rule φ = (φ`)`∈L meets the

egalitarian lower bound.

5 The multidimensional uniform rule

A special case of multidimensional sequential rule is the multidimensional uniform rule.

This rule is defined through a “non-discriminatory” sequential adjustment function (in

each stage it offers the same to all of the agents) and has as initial reference vector the

egalitarian allocation.

The multidimensional uniform rule is defined applying the uniform rule commodity

by commodity.

Multidimensional uniform rule, U : For each R ∈ RN , each i ∈ N, and each ` ∈ L,

Ui`(R) ≡
{

min{p`(Ri), λ`(R)} if
∑

N p`(Rj) ≥ Ω`

max{p`(Ri), λ`(R)} if
∑

N p`(Rj) ≤ Ω`,

where λ`(R) ≥ 0 and solves
∑

N Uj`(R) = Ω`.

The rule determines some bounds, that at the same time determine a kind of common

“budget set” in which each agent has to maximize his preferences. The bounds that

define such set (that geometrically is a |L|-dimensional box) are chosen in such manner

that feasibility is assured (see Figure 3). This rule is strategy-proof (see Amorós [3]), same-

sided (and therefore unanimous), own peak-only and replacement monotonic. However,

it is not efficient. This is shown in the following example.

Example 1 Let be N ≡ {1, 2}, L ≡ {1, 2} and Ω ≡ (1, 1). Let R ∈ R{1,2} be such that

p(R1) ≡ (1, 1) ≡ p(R2), (1
3
, 2

3
) P1 (1

2
, 1

2
) and (2

3
, 1

3
) P2 (1

2
, 1

2
). Then Ui`(R) = 1

2
for each

i ∈ N and each ` ∈ L. Let R̃ ∈ R{1,2} be such that p(R̃1) ≡ (1
3
, 1) and p(R̃2) ≡ (1, 1

3
). It

follows that U1(R̃) = (U11(R̃), U12(R̃)) = (1
3
, 2

3
) and U2(R̃) = (U21(R̃), U22(R̃)) = (2

3
, 1

3
).

This implies that, for each i ∈ N, Ui(R̃) Pi Ui(R). Therefore, the multidimensional uniform

rule is not efficient.

Example 1 is illustrated in Figure 4. In this Edgeworth box preferences are specified so

that: (i) make the uniform rule to recommend the egalitarian allocation, and (ii) there

are feasible allocations that Pareto dominate the egalitarian allocation.

12Here π`(RN ) ≡ {π`(R) = (π`(Ri))i∈N : R ∈ RN} and Z` ≡ {x` = (xi`)i∈N ∈ [0,Ω`]
N :

∑
N xi` =

Ω`}.
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Figure 3: The multidimensional uniform rule. Here, |N | ≡ 3 and |L| ≡ 2, there is not enough

of the first good and there is too much of the second good. Then, an upper bound λ1 ∈ R+

and a lower bound λ2 ∈ R+ are chosen and each agent maximizes his preferences in the rectangle

[0, λ1] × [λ2,Ω2]. The bounds are specified in such way that the sum of the peak amounts equals

the social endowment of each good.
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Figure 4: The multidimensional uniform rule is not efficient. Here, both peaks are greater than

equal division for each good, so the uniform rule assigns equal division. However, there are a lot of

allocations that Pareto dominate it (shaded area).

The first result concerning the multidimensional uniform rule is consequence of the

rule being strategy-proof, unanimous and replacement monotonic, together with Theorem

3.

Corollary 2 The multidimensional uniform rule is strongly Pareto dominant strategy-

proof.

Next we present a new characterization of the multidimensional uniform rule.

Theorem 5 The multidimensional uniform rule is the only Pareto dominant strategy-

proof rule that satisfies unanimity, equal treatment and replacement monotonicity.

Proof. See the Appendix. �

Remark 5 the proportional rule13 satisfies unanimity, equal treatment and replacement

monotonicity, but is not strategy-proof and therefore is not Pareto dominant strategy-

proof. The serial rule14 is (strongly) Pareto dominant strategy-proof, replacement mono-

tonic and unanimous, but does not satisfy equal treatment. We have not been able to

13proportional rule, ϕpro: For each R ∈ RN , each ` ∈ L and each i ∈ N,

ϕpro
i` (R) ≡

{
p`(Ri)∑
N p`(Rj)Ω` if

∑
N p`(Rj) > 0,

Ω`

n otherwise.

14Serial rule, ϕs: For each R ∈ RN and each ` ∈ L, if i ∈ N \ {n}, ϕs
i`(R) ≡

min
{
p`(Ri),Ω` −

∑
j<i ϕ

s
j`(R)

}
, and ϕs

n` ≡ Ω` −
∑

j<n ϕ
s
j`(R).

12



find a rule that satisfies all the properties listed in Theorem 5 except unanimity. Also, it

is an open question whether replacement monotonicity can be eliminated from the charac-

terization, or at least be weakened to non-bossiness. Anyway, getting rid of non-bossiness

is a non trivial issue (see Remark 2 in Morimoto, Serizawa and Ching [16] in reference to

this point).

6 Final Comments

Before finishing some final remarks are in order. The property of replacement monotonicity

has been fundamental to extending results from two-agent economies to economies with

an arbitrary amount of agent (specially, to Lemma 7). However, this is a very strong

property and its economic interpretation when it is not accompanied with efficiency is

unclear. Nevertheless, we think that its use, at least in a provisional way, is justified in

order to get some understanding of the structure of strategy-proof rules.

With respect to the multidimensional uniform rule, Anno and Sasaki [4] present three

results in two-agent economies: (i) the rule is strongly Pareto dominant strategy-proof ;

(ii) the rule can be characterized through the properties of Pareto dominant strategy-

proofness, equal treatment and own peak-onliness; and (iii) the rule can be characterized

through Pareto dominant strategy-proofness, the egalitarian lower bound and own peak-

onliness. Characterization (iii) is a corollary of characterization (ii) since, in two-agent

economies, the egalitarian lower bound implies equal treatment.

Our more important contribution consists of answering in the affirmative the question

raised by Anno y Sasaki [4] of whether their result (i) still holds in economies with an

arbitrary amount of agents. Their characterization result (ii) is difficult to compare with

ours since own peak-onlyness is part of our definition of Pareto dominant strategy-proof

rules. They show independence of their properties. We are not able to do that.

As we already mentioned, we can construct multidimensional sequential rules meeting

the egalitarian lower bound taking as initial reference vector the egalitarian allocation.

The multidimensional uniform rule is just one of these rules, but there are plenty more

(in fact, for each admissible sequential adjustment function, there is a sequential rule that

meets the egalitarian lower bound). This implies that characterization (iii) of Anno and

Sasaki [4] no longer holds with more than two agents.

A Appendix

Let be ϕ ∈ Φ and i ∈ N. For each R−i ∈ RN\{i} define the option set of agent i under

ϕ by Oϕ
i (R−i) ≡ {xi ∈ X | existe Ri ∈ R tal que ϕi(Ri, R−i) = xi}. For each i ∈ N,

each Ri ∈ R, and each Y ⊆ X define the choice set of agent i on Y with respect to

Ri by Ci(Ri, Y ) ≡ {xi ∈ Y | para cada yi ∈ Y, xi Ri yi}.

Lemma 2 Let ϕ be a rule. Then,

(i) ϕ is strategy-proof if and only if for each R ∈ R and each i ∈ N, ϕi(R) ∈ Ci(Ri, O
ϕ
i (R−i)).

(ii) If ϕ ∈ Φ∗, then for each i ∈ N, each R−i ∈ RN\{i}, and each ` ∈ L, there are

a`, b` ∈ [0,Ω`] such that Oϕ
i (R−i) =

∏
L[a`, b`].

13



(iii) If ϕ ∈ Φ∗, then for each R ∈ R and each i ∈ N, Ci(Ri, O
ϕ
i (R−i)) = {ϕi(R)}.

Proof. Part (i) es straightforward and Part (ii) is Lemma 8 in Anno and Sasaki [4]. To see

Part (iii), notice that Part (ii) and single-peakedness of preferences imply |Ci(Ri, O
ϕ
i (R−i))| =

1, so the result follows from Part (i). �

Since option sets of strategy-proof and own peak-only rules are singletons, we often abuse

notation and write, for each ϕ ∈ Φ∗NM , each R ∈ R and each i ∈ N, Ci(Ri, O
ϕ
i (R−i)) =

ϕi(R).

Domination between rules can easily be translated to an inclusion of option sets.

Lemma 3 Let ϕ and ψ be two rules in Φ∗NM . Then ϕ dom ψ if and only if for each

i ∈ N and each R−i ∈ RN\{i}, Oψ
i (R−i) ⊆ Oϕ

i (R−i).

Proof. (=⇒) Let i ∈ N and R−i ∈ RN\{i}. Take xi ∈ Oψ
i (R−i) and Ri ∈ Rsuch that

p(Ri) = xi. By Lemma 2 (iii), ψi(R) = xi. As ϕ dom ψ, ϕi(R) Ri ψi(R) = p(Ri), and

therefore ϕi(R) = xi and xi ∈ Oϕ
i (R−i).

(⇐=) Let i ∈ N and R ∈ RN . By Lemma 2 (i), ϕi(R) ∈ Ci(Ri, O
ϕ
i (R−i)) and ψi(R) ∈

Ci(Ri, O
ψ
i (R−i)). As Oψ

i (R−i) ⊆ Oϕ
i (R−i), ϕi(R) Ri ψi(R). �

The proof of Theorem 3 makes use of several lemmas. The first one is a result due

to Morimoto, Serizawa and Ching [16], and states that for strategy-proof and non-bossy

rules, unanimity is equivalent to same-sidedness.

Lemma 4 (Morimoto, Serizawa y Ching, 2013) Every strategy-proof, unanimous, and non-

bossy rule is same-sided.

Proof. See Lemma 1 in Morimoto et al [16]. �

The next result, due to Amorós [3], states that given three allocations x∗i , x
′
i, x
′′
i ∈ X,

if any of the coordinates of x′i is not in between the coordinates of x∗i and x′′i , then x∗i can

be considered as the peak of a preference relation in which x′′i is preferred to x′i.

Lemma 5 (Amorós, 2002) Let i ∈ N and x∗i , x
′
i, x
′′
i ∈ X. If it is not true that, for each

` ∈ L, x∗i` ≤ x′i` ≤ x′′i` or x∗i` ≥ x′i` ≥ x′′i`, then there is Ri ∈ R such that p(Ri) = x∗i and

x′′i Pi x
′
i.

Proof. See Lemma 1 in Amorós [3]. �

Lemmata 6 and 7 are used to prove that every strategy-proof, unanimous and replace-

ment monotonic rule is own peak-only (Lemma 8).

Lemma 6 Let ϕ be a strategy-proof and non-bossy rule. Then, for each R ∈ RN , each

S ⊆ N, each j ∈ S and each R∗j ∈ R such that p(R∗j ) = ϕj(R), we have ϕj (R∗S, R−S) =

ϕj(R).

Proof. Let R ∈ RN , S ⊆ N, j ∈ S and R∗j ∈ R be such that p(R∗j ) = ϕj(R). Since ϕ is

strategy-proof, ϕj(R
∗
j , R−j) = ϕj(R) (otherwise agent j gets his peak in economy (R∗j , R−j)

declaring Rj). By non-bossiness, ϕ(R∗j , R−j) = ϕ(R). Let k ∈ S \{j} and R∗k ∈ R be such

14



that p(R∗k) = ϕk(R). Then, by strategy-proofness, ϕk(R
∗
j,k, R−j,k) = ϕk(R

∗
j , R−j) and, by

non-bossiness, ϕ(R∗j,k, R−j,k) = ϕ(R∗j , R−j) = ϕ(R). Continuing in the same fashion the

result follows. �

Given i ∈ N, Ri, R̃i ∈ R and x ∈ X, defineL(Ri, R̃i, xi) ≡ {` ∈ L : either (i) p`(Ri) <

xi` and p`(R̃i) ≤ xi`, or (ii) p`(Ri) > xi` and p`(R̃i) ≥ xi`, or (iii) p`(Ri) = p`(R̃i) = xi`}.

Lemma 7 Let ϕ be a strategy-proof, unanimous and replacement monotonic rule. Then,

for each R ∈ RN , each i ∈ N, each R̃i ∈ R, each ` ∈ L(Ri, R̃i, ϕi(R)), each j ∈ N \ {i}
and each R∗j ∈ R such that p(R∗j ) = ϕj(R), we have ϕi`(R̃i, R

∗
j , R−i,j) = ϕi`(R).

Proof. Let ϕ be a rule that satisfies the properties listed in the lemma. By Lemma 4, ϕ

is same-sided, and by Remark 2, ϕ is non-bossy. Let R ∈ RN , i ∈ N and consider the

profile R∗−i ∈ RN\{i} such that p(R∗j ) = ϕj(R) for each j ∈ N \ {i}. We will prove the

lemma in several steps.

Step 1: For each i ∈ N and each R′i ∈ R such that p(R′i) = p(Ri), we have

ϕ(R′i, R
∗
−i) = ϕ(R).

By Lemma 6 and non-bossiness, it is sufficient to see that ϕi(R
′
i, R

∗
−i) = ϕi(Ri, R

∗
−i).

Let ` ∈ L. If ϕi`(R
′
i, R

∗
−i) ≤ p`(R

′
i), since ϕ is same-sided and by Lemma 6, we have

ϕj`(R
′
i, R

∗
−i) ≤ p(R∗j ) = ϕj`(Ri, R

∗
−i) for each j ∈ N \ {i}. Therefore, ϕi`(R

′
i, R

∗
−i) =

Ω` −
∑

N\{i} ϕj`(R
′
i, R

∗
−i) ≥ Ω` −

∑
N\{i} ϕj`(Ri, R

∗
−i) = ϕi`(Ri, R

∗
−i). In consequence, as

p`(R
′
i) = p`(Ri),

ϕi`(Ri, R
∗
−i) ≤ ϕi`(R

′
i, R

∗
−i) ≤ p`(Ri). (1)

Analogously, we can show that if ϕi`(R
′
i, R

∗
−i) ≥ p`(R

′
i), then

ϕi`(Ri, R
∗
−i) ≥ ϕi`(R

′
i, R

∗
−i) ≥ p`(Ri). (2)

Since both (1) and (2) are true for each ` ∈ L, if ϕi(R
′
i, R

∗
−i) 6= ϕi(Ri, R

∗
−i) then

ϕi(R
′
i, R

∗
−i) Pi ϕi(Ri, R

∗
−i), violating the strategy-proofness of ϕ.

Step 2: For each i ∈ N , each R̃i ∈ R and each ` ∈ L(Ri, R̃i, ϕi(R)), we have

ϕi`(R̃i, R
∗
−i) = ϕi`(R).

Notice that, by Lemma 6, it is sufficient to see that ϕi`(R̃i, R
∗
−i) = ϕi`(Ri, R

∗
−i). As-

sume this is not true. Let us analyze the case in which ` ∈ L is such that p`(R̃i) +∑
N\{i} p`(R

∗
j ) ≤ Ω`, since an analogous reasoning applies to the symmetric case. We

have that p`(R̃i) ≤ Ω` −
∑

N\{i} p`(R
∗
j ) = ϕi`(Ri, R

∗
−i), since, for each j ∈ N \ {i},

p`(R
∗
j ) = ϕj`(Ri, R

∗
−i). Therefore, being ϕi`(Ri, R

∗
−i) = ϕi`(R) and ` ∈ L(Ri, R̃i, ϕi(R)), we

have p`(Ri) < ϕi`(Ri, R
∗
−i). By same-sidedness, for each j ∈ N\{i}, ϕj`(Ri, R

∗
−i) ≥ p`(R

∗
j ).

Then,
∑

N\{i} ϕj`(R̃i, R
∗
−i) ≥

∑
N\{i} ϕj`(Ri, R

∗
−i) and, by feasibility, ϕi`(R̃i, R

∗
−i) ≤ ϕj`(Ri, R

∗
−i).

in consequence, we have: (i) p`(Ri) < ϕi`(Ri, R
∗
−i) and (ii) ϕi`(R̃i, R

∗
−i) < ϕj`(Ri, R

∗
−i).

By Lemma 5, there is R′i ∈ R con p(R′i) = p(Ri) such that ϕi`(R̃i, R
∗
−i)P

′
iϕj`(Ri, R

∗
−i). By

Step 1, ϕj`(R
′
i, R

∗
−i) = ϕj`(Ri, R

∗
−i). Thus, ϕi`(R̃i, R

∗
−i)P

′
iϕi`(R

′
i, R

∗
−i), contradicting the

strategy-proofness of ϕ.

Step 3: For each i ∈ N , each R̃i ∈ R, each ` ∈ L(Ri, R̃i, ϕi(R)), each j ∈ N \ {i}
and eachR∗j ∈ R such that p(R∗j) = ϕj(R), we have ϕi`(R̃i, R

∗
j , R−i,j) = ϕi`(R).

By Step 2, we only need to show that ϕi`(R̃i, R
∗
j , R−i,j) = ϕi`(R̃i, R

∗
−i). First, we show that
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ϕi`(R̃i, R
∗
−i,j, Rj) = ϕi`(R̃i, R

∗
−i). By non-bossiness, it is sufficient to see that ϕj`(R̃i, R

∗
−i,j, Rj) =

ϕj`(R̃i, R
∗
−i). Assume, without loss of generality, that ϕj`(R̃i, R

∗
−i,j, Rj) < ϕj`(R̃i, R

∗
−i).

This means, by replacement monotonicity, that

ϕk`(R̃i, R
∗
−i,j, Rj) ≥ ϕk`(R̃i, R

∗
−i) para cada k ∈ N \ {j}. (3)

If ϕi`(R̃i, R
∗
−i,j, Rj) = ϕi`(R̃i, R

∗
−i) we get the result. If not, since from Lemma 6 and Step

2, ϕi`(R̃i, R
∗
−i) = ϕi`(R) = ϕi`(R

∗
−i,j, Ri,j), we have ϕi`(R̃i, R

∗
−i,j, Rj) > ϕi`(R

∗
−i,j, Ri,j)

which implies, by replacement monotonicity, that

ϕk`(R̃i, R
∗
−i,j, Rj) ≤ ϕk`(R

∗
−i,j, Ri,j) para cada k ∈ N \ {i, j}. (4)

Take k ∈ N \{i, j}. By Lemma 6, Step 2 and replacement monotonicity, ϕk`(R
∗
−i,j, Ri,j) =

ϕk`(R) = ϕk`(R̃i, R
∗
−i). In consequence, by (3) and (4) we have ϕk`(R̃i, R

∗
−i,j, Rj) =

ϕk`(R̃i, R
∗
−i). By replacement monotonicity, ϕj`(R̃i, R

∗
−i,j, Rj) = ϕj`(R̃i, R

∗
−i), a contra-

diction. Continuing in the same fashion we can prove, for each S ⊆ N \ {i}, that

ϕj`(R̃i, R
∗
−S, RS) = ϕj`(R̃i, R

∗
−i). We get the result considering S = N \ {i, j}. �

Lemma 8 Let ϕ be a strategy-proof, unanimous and replacement monotonic rule. Then

ϕ is own peak-only.

Proof. Let ϕ be a rule that satisfies the properties listed in the lemma. By Lemma 4,

ϕ is same-sided, and by Remark 2, ϕ is non-bossy. Assume that ϕ is not own peak-

only. Then there are R ∈ RN , i ∈ N, ` ∈ L, R′i ∈ R with p(R′i) = p(Ri) such that,

without loss of generality, ϕi`(R
′
i, R−i) < ϕi`(R). By same-sidedness, both ϕi`(R

′
i, R−i)

and ϕi`(R) are on the same side of the peak. Assume, again without loss of generality, that

p`(Ri) ≤ ϕi`(R
′
i, R−i) < ϕi`(R). By feasibility and same-sidedness, there is j ∈ N\{i} such

that p`(Rj) ≤ ϕj`(R
′
i, R−i) < ϕj`(R). Let R∗i ∈ R be such that p(R∗i ) = ϕi(R

′
i, R−i) and let

R∗j ∈ R be such that p(R∗j ) = ϕi(R). Then, it is easily seen that ` ∈ L(Ri, R
∗
i , ϕi(R)) and

` ∈ L(Rj, R
∗
j , ϕj(R

′
i, R−i)). By Lemma 7, ϕi`(R

∗
i,j, R−i,j) = ϕi`(R), and ϕj`(R

∗
i,j, R−i,j) =

ϕj`(R
′
i, R−i). By Lemma 6, ϕ(R′i, R−i) = ϕ(R∗i , R−i), and therefore ϕj`(R

∗
i,j, R−i,j) =

ϕj`(R
∗
i , R−i), and in consequence non-bossiness implies ϕi`(R

∗
i,j, R−i,j) = ϕi`(R

∗
i , R−i) =

ϕi`(R
′
i, R−i). It follows that ϕi`(R) = ϕi`(R

∗
i,j, R−i,j) = ϕi`(R

′
i, R−i). This contradicts our

hypothesis. �

Proof of Theorem 3. Let ϕ be a rule that satisfies the properties listed in the theorem.

By Lemma 8, ϕ is own peak-only. Let ψ ∈ Φ∗SP be such that ψ dom ϕ and ψ 6= ϕ. Then,

by Lemma 3, for each i ∈ N and each R−i ∈ RN\{i} we have Oψ
i (R−i) ⊆ Oϕ

i (R−i).

If for each i ∈ N and each R−i ∈ RN\{i}, we have Oψ
i (R−i) = Oϕ

i (R−i), then by

Lemma 2 (iii) we have, for each i ∈ N and each R ∈ RN , ψi(R) = Ci(Ri, O
ψ
i (R−i)) =

Ci(Ri, O
ϕ
i (R−i)) = ϕi(R), and thus ψ = ϕ, contradicting our hypothesis. Therefore, there

are i ∈ N and R−i ∈ RN\{i} such that Oψ
i (R−i) ( Oϕ

i (R−i). It follows that there is

x′i ∈ X such that x′i ∈ O
ψ
i (R−i) and x′i /∈ O

ϕ
i (R−i). Let R′i ∈ R be such that p(R′i) = x′i.

Then x′i = Ci(R
′
i, O

ψ
i (R−i)) = ψi(R

′
i, R−i). Let yi ≡ Ci(R

′
i, O

ϕ
i (R−i)) = ϕi(R

′
i, R−i). Since

x′i /∈ O
ϕ
i (R−i), yi 6= x′i. Then, there is ` ∈ L such that, without loss of generality, yi` <
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x′i` = p`(R
′
i). By Lemma 4, ϕ is same-sided, and since ϕi`(R

′
i, R−i) < p`(R

′
i), this implies,

for each j ∈ N \ {i}, ϕj`(R′i, R−i) ≤ p`(Rj). Being ϕi`(R
′
i, R−i) < p`(R

′
i) = ψi`(R

′
i, R−i),

by feasibilitythere is j ∈ N \ {i} such that ϕj`(R
′
i, R−i) > ψj`(R

′
i, R−i). Thus,

p`(Rj) ≥ ϕj`(R
′
i, R−i) > ψj`(R

′
i, R−i).

By Lemma 5, there is R′j ∈ R such that p(R′j) = p(Rj) and ϕj(R
′
i, R−i) P

′
j ψj(R

′
i, R−i).

Since ψ is own peak-only, we have

ϕj(R
′
i, R

′
j, R−i,j) P

′
j ψj(R

′
i, R

′
j, R−i,j).

But this last statement contradicts that ψ dom ϕ. �

The next lemma presents a property of one-dimensional rules that satisfy strategy-

proofness and same-sidedness.

Lemma 9 Let R be the one-dimensional single-peaked domain and let ϕ be a strategy-

proof and same-sided rule defined on that domain. For each R ∈ RN , i ∈ N and R′i ∈ R,
we have

(i) If p(Ri) < ϕi(R) and p(R′i) ≤ ϕi(R), then ϕi(R
′
i, R−i) = ϕi(R),

(ii) If p(Ri) > ϕi(R) and p(R′i) ≥ ϕi(R), then ϕi(R
′
i, R−i) = ϕi(R).

Proof. Let us check (i), since (ii) is analogous. Suppose p(Ri) < ϕi(R) and p(R′i) ≤ ϕi(R).

As ϕ is same-sided, p(Rj) ≤ ϕj(R) for each j ∈ N \ {i}. Then p(R′i) +
∑

N\{i} p(Rj) ≤∑
N ϕj(R) = Ω. Again by same-sidedness, ϕi(R

′
i, R−i) ≥ p(R′i). Assume ϕi(R

′
i, R−i) 6=

ϕi(R). There are two cases to analyze:

Case 1: ϕi(R
′
i, R−i) > ϕi(R). Then ϕi(R

′
i, R−i) > ϕi(R) ≥ p(R′i), which contradicts

strategy-proofness of ϕ.

Case 2: ϕi(R
′
i, R−i) < ϕi(R). It is a well-known fact that a one-dimensional strategy-

proof and same-sided rule is own peak-only (ver AGREGAR). Let R̃i ∈ R be such that

p(R̃i) = p(Ri) and ϕi(R
′
i, R−i) P̃i ϕi(R). As ϕ is own peak-only, ϕi(R) = ϕi(R̃i, R−i), and

therefore ϕi(R
′
i, R−i) P̃i ϕi(R̃i, R−i), contradicting strategy-proofness. �

Proof of Theorem 4. Let φ be a multidimensional sequential rule. Notice that φ inherits

the properties of replacement monotonicity and same-sidedness from each of its coordinate

functions. We need to see that φ is also strategy-proof. Let be R ∈ RN , i ∈ N and R′i ∈ R.
We must prove that φi(R) Ri φi(R

′
i, R−i). Take ` ∈ L and assume

∑
N p`(Rj) ≥ Ω`. By

same-sidedness, φi`(R) ≤ p`(Ri). Assume φi`(R) < p`(Ri). If p`(R
′
i) ≥ φi`(R) then, by

Lemma 9, φi`(R
′
i, R−i) = φi`(R). If p`(R

′
i) < φi`(R), we have two cases to analyze.

Case 1: p`(R
′
i) +

∑
N\{i} p`(Rj) ≥ Ω`. By same-sidedness, φi`(R

′
i, R−i) ≤ p`(R

′
i) <

φi`(R).

Case 2: p`(R
′
i) +

∑
N\{i} p`(Rj) < Ω`. Assume φi`(R

′
i, R−i) > φi`(R). By feasibility

there is j ∈ N \{i} such that φj`(R
′
i, R−i) < φj`(R). By same-sidedness we have p`(Rj) ≤

φj`(R
′
i, R−i) < φj`(R) ≤ p`(Rj), which is absurd. In consequence, φi`(R

′
i, R−i) ≤ φi`(R).

We conclude that, either φi`(R) = p`(Ri) or φi`(R
′
i, R−i) ≤ φi`(R) < p`(Ri). With

an analogous reasoning we can see that, for ` ∈ L such that
∑

N p`(Rj) < Ω`, we have

φi`(R) = p`(Ri) ó φi`(R
′
i, R−i) ≥ φi`(R) > p`(Ri). This implies φi(R)Riφi(R

′
i, R−i). �
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Proof of Theorem 5. The multidimensional uniform rule is strongly Pareto dominant

strategy-proof by Corollary 2 and, therefore, Pareto dominant strategy-proof. Moreover,

it satisfies equal treatment. We already mentioned that it is unanimous and replacement

monotonic. Let ϕ be a rule that satisfies the properties listed in the theorem. Then, in

particular, ϕ is strategy-proof, unanimous, equally-treating and non-bossy. It follows, from

Corollary 1 in Morimoto, Serizawa and Ching, that ϕ = U. �
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