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Abstract

We apply some recently developed and more traditional methods to forecast inflation in
Argentina and compare their predictive ability at different horizons. Our variety of models
includes: (i) Traditional time series models -AR(1) and a monetary VAR-, (ii) a factor model
combining a large number of business cycle indicators and (iii) micro-funded models including
a conventional New Keynesian Phillips Curve and one that incorporates money to evaluate
its information content as a predictor of inflation. We compare the predictive performance of
the different methods using the Giacomini-White test over the relevant horizons for monetary
policy decisions. We find that the monetary VAR outperforms the rest of the models.
JEL Classification: C32, E31, E37
Keywords: Inflation Forecasting, Time Series Models, Phillips Curve, Factor Models

Resumen

Aplicamos metodologías recientes y tradicionales para pronosticar la inflación en la Ar-
gentina, comparando su capacidad predictiva para diferentes horizontes. Nuestra variedad de
modelos incluye: (i) Modelos tradicionales de series de tiempo -AR (1) y un VAR monetario-,
(ii) modelos de factores que combinan un gran número de indicadores del ciclo económico y
(iii) modelos microfundados incluyendo una Curva de Phillips nuevo keynesiana convencional
y una que incorpora dinero para evaluar su contenido informativo como predictor de la in-
flación. Comparamos la capacidad predictiva de los diferentes métodos empleando el test de
Giacomini-White para horizontes relevantes en la toma de decisiones de política monetaria.
Encontramos que el VAR monetario supera al resto de los modelos.

∗The opinions expressed in this work are those of the authors, and do not necessarily reflect the opinions of the
Central Bank of Argentina or its authorities.

1



1 Introduction

Inflation forecasting plays a central role in monetary policy formulation but it is also essential for
private sector decision making involving long term commitments, as labor contracts, mortgages
and other forms of debt.

A growing body of literature has emerged in recent years on inflation forecasting, with an
explosion of new methods including those that use a large number of predictors and forecast
combination. These methods as well as the emergence of new assets linked to inflation, which
incorporate inflation expectations, provide alternative prediction methods to more traditional in-
flation forecasting models as Phillips Curves (Faust andWright, 2013) or DSGE models. Whether
these different methods and models can serve as complements rather than being rivals depending
on the forecasting horizon, the volatility of the economic environment or the presence of struc-
tural breaks in the time series of inflation or in its relationship with its determinants is something
that has been explored recently (Faust and Wrigth, 2013; Dotsey et al., 2011; Stock and Watson,
2009).

In this paper, we consider a wide range of forecasting models: Traditional time series models
as an AR(1) and a monetary VAR, a Factor Model combining a large number of business cycle
indicators and micro-funded models, including a conventional New Keynesian Phillips Curve
and one that incorporates a money gap to evaluate its information content as a predictor of
inflation. We estimate the models for the period 2004:1-2010:12 and then, using rolling windows,
we produce pseudo out-of-sample predictions of inflation for the period 2011:1-2015:3 at different
horizons and investigate how these alternative models perform in terms of their predictive ability
relative to the AR(1) model as a benchmark, depending on the forecast horizon. We test for
differences in models’predictive ability using the Giacomini and White (2006) test.

The paper is organized as follows: In Section 1 we describe in detail the empirical approach
we use to conduct our forecasting exercise, in Section 2 we present our empirical approach, while
in Section 3 the results of our empirical exercise are displayed. Section 4 presents the results of
applying the Giacomini-White (2006) test to evaluate the differences in predictive ability of the
different models and finally, Section 5 concludes.

2 Our empirical approach

The sample chosen to conduct our forecasting excercise is the period 2004:1-2015:3. We use
monthly data to forecast inflation, measured by the Consumer Price Index (CPI). In choosing the
sample period as well as the frequency of the data we followed a pragmatic approach. Although
ideally one would like to consider a long span to find forecasting models that perform well in all
possible macroeconomic conditions, this could be an unattainable objective, taking into account
that the parsimonious an predominantly linear time series models in use for forecasting are
no more than just local approximations to complicated processes. This is particularly true for
Argentina, that has a history of high macroeconomic instability. In this regard we preferred to
exclude from our sample the unusual period corresponding to the external and financial crisis of
2001 and the abandoning of the Convertibility regime, that ended with a sharp depreciation of
the peso in January 2002. Thus, our sample extends from 2004:1 to 2015:3.

We consider a set of 5 forecasting models of inflation: (i) An AR(1) model as benchmark, (ii)
a monetary VAR model that we describe in detail below, (iii) a Factor Model including a large
set of business cycle indicators, (iv) a conventional New Keynesian Phillips Curve and (v) one
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that incorporates a measure of the real money gap. These models are estimated for the period
2004:1 2010:12 and then used to produce out of sample forecast over the period 2011:1-2015:3
based on rolling windows estimation for different forecasting horizons. We then compare the
predictive capacity of the different models and methods based on the Root Mean Square Error
(RMSE) and the Mean Absolute Percentage Error (MAPE), considering the AR(1) model as
benchmark. Finally, we evaluate the differences in the predictive ability of models using the
Giacomini-White (2006) methodology to compare the forecast accuracy of the different models
relative to the AR(1). The reason to choose Giacomini-White procedure is that it has some
advantages relative to other methods. First, it is a test of conditional predictive ability and thus
focuses on the relevant question for forecasters: Which of two forecasts will be more accurate in
the future. Second, it is adequate for testing both nested and non-nested models.

2.1 Rivals or complementary models?: Different horizons, different models

Although from the point of view of forecasters, the process of model selection is guided by the
search of the best possible predictive accuracy, economic theory also provides a guidance about
which models could be preferred depending on the forecasting horizon. Regarding inflation,
autorregresive time series models, Dynamic Factor Models which are based on business cycle
indicators and Phillips Curves are expected to perform better in the short run, since movements
in the inflation rate are supposed to be related to demand pressures or transitory changes in
relative prices that cancel out in the mean term. At longer horizons, models accounting for mon-
etary developments as monetary VARs or Phillips Curves incorporating measures of monetary
overhang, can add predictive ability, since developments in money aggregates are expected to
account for changes in inflation at longer horizons. In this regard, different models can be seen
as complementary rather than rivals when forecasting inflation at different horizons. We follow
this approach in our forecasting exercise when evaluating and ranking our models.

2.2 Factor Models

Inflation forecast can be conducted through the estimation of common factors from a large set of
monthly data and subsequently using them as regressors for inflation (Stock and Watson, 2006).
The idea behind this approach is that the variables in the set of interest are driven by a few
unobservable factors.

More concretely, the covariance between a large number of n economic time series with
their leads and lags can be represented by a reduced number of unobserved q factors, with
n > q. Disturbances in such factors could in this context represent shocks to aggregate supply
or demand.

Therefore, the vector of n observable variables in the cycle can be explained by the distributed
lags of q common factors plus n idiosyncratic disturbances which could eventually be serially
correlated, as well as being correlated among the i′s.

A vector Xit of n stationary monthly business cycle indicators xt = (x1t, ...., xnt)́ , with t =

1, ..., T can be explained by the distributed lags of q common latent factors plus n idiosyncratic
disturbances which could eventually be serially correlated.

Xit = λi(L)́ft + uit (1)

Where ft is a vector q× 1 of unobserved factors, λ is a q × 1 vector lag polynomial of dynamic
factor loadings and the uit are the idiosyncratic disturbances that are assumed to be uncorrelated
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with the factors in all leads and lags, that is to say E(ftuit) = 0 ∀ i, s.
The objective is therefore to estimate E(yt | Xt) modeling yt according to

yt = β(L)́ft + εt (2)

If the lag polynomials λi (L) in (1) and β (L) in (2) are of finite order p, Stock and Watson
(2002a) show that the factors f can be estimated by principal components.

The data set used to extract the factors comprises 27 business cycle indicators, ranging from
financial indicators to tax collection data, disaggregated data on industrial production, monetary
aggregates and interest rates1.

The series were seasonally adjusted when needed, de-trended or differentiated to make them
stationary and finally log transformed. To apply the factor model methodology we proceeded
in the following way: (i) We used the indicators to calculate the factors using the principal
component methodology, (ii) then we used the scree plot2 presented in Figure 1 to determine
the number of factors to be used to estimate equation (2). It can be seen from there that it
is up to the second factor that the addition of factors contributes to increase the proportion of
covariance of the time series explained by the factors. Taking into account this information, we
estimated equation (2) using the first two factors.

Figure 1: Scree Plot
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2.3 A monetary VAR

VAR models have become an essential tool for out-of-sample macroeconomic forecasting and are
widely in use at central banks to produce not only point forecasts but also density forecast. Here
we use a VAR model which incorporates a money aggregate and other variables that account
for relevant features of a small open economy as Argentina (Basco, D’Amato and Garegnani,
2009). This set of variables includes: (i) The change in the M2 money aggregate, (ii) the change
in the nominal exchange rate, (iii) the nominal interest rate, (iv) the output gap and (v) CPI
inflation. To calculate the output gap at the monthly frequency we use a Markov-random-walk
technique as suggested by Litterman (1983) to obtain a monthly measure of GDP and then the
Hodrick-Prescott filter to estimate a measure of the output gap.

1The indicators included in the data set are detailed in Appendix I.
2Developed by R B. Cattel in "The scree test for the number of factors", Multivariate Behav. Res. 1:245-76,

1966. University of Illinois, Urbana-Champaign, ILl.
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2.4 Alternative Phillips Curves

2.4.1 A Hybrid New-Keynesian Phillips Curve

D´Amato and Garegnani (2009) estimate a Hybrid New-Keynesian Phillips Curve (HNKPC)
for Argentina over the period 1993-2007 which is based on the Galí and Gertler (1999) model
extended to the case of a small open economy and considering separately the influence of nominal
devaluation and foreign inflation on domestic prices.

We relay on the same specification to estimate a HNKPC for the period 2004:1 2010:12.

πt = φ1πt−1 + φ2Et(πt+1) + γπ∗t + λ∆et + δxt + et (3)

Where Et(πt+1) is the expectation of πt+1 in t, π∗t is foreign inflation, ∆et is nominal devalua-
tion and xt is the output gap. We measure foreign inflation by a weighted average of CPI inflation
of the three main trade partners of Argentina: Brazil, US and the EU. Nominal devaluation is
calculated as the change in the log of the nominal exchange rate with the same partners.

2.4.2 Adding a money gap to the HNKPC

Several studies find that while money is not informative about future values of inflation for short-
run forecasts, it can improve forecast accuracy at longer horizons. As stressed in Subsection 2.1.
this finding is in line with the theoretical idea that money is a relevant determinant of inflation
in the medium and long term (Reis, 2013). Assenmacher-Wesche and Gerlach (2006) show
a significant contribution of low frequency movements in money growth to forecast inflation
using a two-pillar Phillips-curve type dynamic model, while Nicoletti-Altimari (2001), Hofmann
(2008), and Scharnagl and Schumacher (2007) all find that M3 growth is useful for inflation
forecasts at medium-term horizons. Also, Gerlach and Svensson (2003) find that a real money
gap representation of the P* model adds to the predictive power of a conventional Phillips curve
approach. Berger and Stavrev (2008) analyze the information content of money in forecasting
euro-area inflation, comparing the predictive performance of various classes of structural and
empirical models. They find that while money contains relevant information for inflation in some
model classes, the marginal contribution of money to forecasting accuracy is often small. Berger
and Österholm (2008) use mean-adjusted Bayesian VARs as an out-of-sample forecasting tool
to test whether money growth Granger-causes inflation and find strong evidence that including
money improves forecast accuracy.

More recently, Valle e Azevedo and Pereira (2010) find that, discarding high frequency move-
ments, money aggregates can be useful to forecast US inflation and that models including it
dominate a wide range of competing models.

Coenen et al. (2003) provide an alternative argument for using money as an indicator variable,
which is that money demand depends on the true level of aggregate output, whereas the Central
Bank only receives a noisy signal of aggregate actual income. Given this link, money can be
informative about the real value of aggregate income depending on the relative variability of
measurements errors vs. the magnitude of money demand fluctuations in response to unobserved
velocity shocks.

Apart from any theoretical support for the use of money as a predictor of inflation, a practical
reason to investigate the information content of money for forecasting purpose is that relying on
more than one model for forecasting and policy advice is in general beneficial. Taking into account
that models’forecast can be biased in different directions, diversifying should add robustness to
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policy decisions and help to reduce the error’s variance in general, which would probably reduce
the policy errors too.

The exercise we develop in this paper relates to Gerlach and Svensson (2003) and Assenmacher-
Wesche and Gerlach (2006) in that we introduce a real money gap to a New Keynesian Phillips
Curve.

The real money gap is defined as the difference between the actual real money stock mt and
its long run equilibrium m∗t ,

mgap = mt −m∗t (4)

At the same time, the long run equilibrium money stockm∗t is given by the level of real money
that is consistent with both, the output y∗t and nominal interest rate r

∗
t long run equilibrium

levels. Thus, in the long-run equilibrium, money demand should be equal to

m∗t = κyy
∗
t − κrr∗t (5)

When introduced into the HNKPC, the real money gap is a measure of demand pressures
and can be considered as an indicator of real monetary overhang and the Phillips Curve is then
written as

πt = φ1πt−1 + φ2Et(πt+1) + γπ∗t + λ∆et + δxt + ϕmgap + et (6)

Where mgap is the money gap.
To estimate the money gap we considered the real money demand model estimated in Ahu-

mada and Garegnani (2012) that incorporates the aggregate supply as the measure of real transac-
tions and takes into account three different measures of opportunity cost: inflation, the exchange
rate depreciation and the domestic interest rate.

3 The empirical results

All 5 models were estimated for the period 2004:1 -2010:12 and then used to produce out of
sample forecast for the period 2011:1 2015:3 for the 1 month, 3 month, 6 month and 12 month
horizons. The results of models’estimation are reported in Appendix II. The predictive accuracy
of the models is measured by the RMSE and the MAPE3. As can be seen from Figure 3 the VAR
model notably outperforms the rest of the models for each month and all horizons. From Figure
4 it is also clear the outstanding performance of the VAR model with respect to the AR(1) at the
1 month horizon,4 although it is also clear that all multivariate models outperform the AR(1),
usually considered as benchmark.

3The results obtained using the MAPE are similar to those based on the RMSE, as verified when conducting
the Giacomini-White test in Section 4. Thus, for brevity, we only present here the results for the RMSE. Those
based on the MAPE are available upon request.

4See Appendix III for the rest of the horizons.
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4 Testing for differences in predictive ability at different hori-
zons

To test if the differences in predictive accuracy found in the previous section are statistically
significant we use the Giacomini and White (2006) test. The Giacomini and White approach
differs from that followed by previous tests, as those proposed by Dieblod and Mariano (1995)
and West (1996) in what it is based on conditional rather than unconditional expectations. In
this regard, the Giacomini and White approach focuses on finding the best forecast method for
the following relevant future. Their methodology is relevant for forecasters who are interested in
finding methodologies that improve predictive ability of forecast, rather than testing the validity
of a theoretical model.5 Consistently with the aim of the test we estimate all models using rolling
windows and in this regard all of them are suitable for conducting the Giacomini and White test,
including the VAR, as stressed by Clark and McCracken (2013).

The test has many advantages: (i) it captures the effect of estimation uncertainty on relative
forecast performance, (ii) it is useful for forecasts based on both nested and non nested models,
(iii) it allows the forecasts to be produced by general estimation methods, and (iv) is quite easy
to be computed. Following a two-step decision rule that uses current information, it allows to
select the best forecast for the future date of interest.

The testing methodology of Giacomini and White consists on evaluating forecast by conduct-
ing an exercise using rolling windows. That is, using the R sample observations available at time
t, estimates of yt are produced and used to generate forecast τ step ahead. The test assumes
that there are two methods, fRt and gRt to generate forecasts of yt using the available set of
information Ft. Models used are supposed to be parametric.

fRt = fRt(γ̂R,t)

gRt = gRt(θ̂R,t)

A total of Pn forecasts which satisfy R + (Pn − 1) + τ = T + 1 are generated. The forecasts
are evaluated using a loss function Lt+τ (yt+τ , fR,t), that depends on both, the realization of the
data and the forecasts. The hypothesis to be tested is:

H0 : E [ht (Lt+τ (yt+τ , fR,t)− Lt+τ (yt+τ , gR,t)) | Ft] = 0

or alternatively

H0 : E [ht∆Lt+τ | Ft] = 0 ∀ t > 0

for all Ft -measurable function ht.
In practice, the test consists on regressing the differences in the loss functions on a constant

and evaluating its significance using the t statistic for the null of a 0 coeffi cient, in the case
of τ = 1. When τ is greater than one, standard errors are calculated using the Newey-West
covariances estimator, that allows for heteroskedasticity and autocorrelation.

The results of applying the Giacomini and White procedure to evaluate the forecasting per-
formance of the two forecasting methods using the RMSE as the loss function are shown in Table
1. Consistently with previous visual inspection, it is clear from the Table that, the VAR model

5See Pincheira (2006) for a nice description and aplication of the test.
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outperforms the rest of the models across all horizons. This result indicates that nominal vari-
ables, such us the rate of growth of money and the nominal interest rate significantly contribute
to improve the predictive performance of multivariate models of inflation.6

Table 1: Giacomini-White test-Sample 2011:1-2015:3 (N = 50)

 t­stat. p­value  t­stat. p­value  t­stat. p­value  t­stat. p­value

Phillps Curve vs AR 4.1388 0.0001 3.5039 0.0010 3.5039 0.0010 3.6186 0.0009

Phillips Curve with Money
vs AR

3.2279 0.0022 4.5048 0.0000 4.5048 0.0000 3.4889 0.0012

Principal Components vs
AR

3.0732 0.0035 2.4141 0.0197 2.4141 0.0197 5.3289 0.0000

VAR vs AR 3.1489 0.0028 3.4020 0.0014 3.4020 0.0014 3.0324 0.0044

VAR vs Phillps Curve 4.0168 0.0002 2.9876 0.0045 2.9876 0.0045 2.7548 0.0090

VAR vs Phillips Curve with
Money

3.7328 0.0005 3.9354 0.0003 3.9354 0.0003 3.0393 0.0043

VAR vs Principal
Components

2.8324 0.0067 3.8666 0.0003 3.8666 0.0003 2.6822 0.0108

Phillips Curve with Money
vs Phillips Curve

2.7820 0.0076 1.7428 0.0879 1.7428 0.0879 1.9877 0.0541

Phillips Curve with Money
vs Principal Components

2.9022 0.0055 3.8307 0.0004 3.8307 0.0004 2.6611 0.0113

Phillips Curve vs Principal
Components

3.3597 0.0015 3.1714 0.0027 3.1714 0.0027 2.6317 0.0122

6 months 12 monthsModels 1 month 3 months

5 Conclusions

We develop an inflation forecasting exercise for Argentina using a variety of inflation models
ranging from time series univariate and multivariate models, causal models based on alternative
inflation theories, to factor models based on the use of a large set of business cycle indica-
tors. The results indicate that multivariate models outperform the AR(1), usually considered as
benchmark. Notably, the VAR model outperforms the rest of the models for each month and
all horizons. This result indicates that the nominal variables included in the VAR model, such
us the rate of growth of money and the nominal interest rate significantly contribute to improve
the predictive performance of multivariate models of inflation.

6Similar results are obtained using the Mean Absolute Percentage Error (MAPE) as shown in Appendix IV.
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Appendix I

Figure A.1: Business cycle indicators included in Factor Model
Series Source Stationary

1 Automobile national production ­ units ADEFA diff

2 Portland cement production AFCP diff

3 Total Income revenues MECON trend

4 Income revenues DGI MECON trend

5 Income revenues DGA (customs) MECON diff

6 Total VAT revenues MECON trend

7 VAT revenues DGI MECON trend

8 IPI ­ nondurable consumer goods Fiel diff

9 IPI ­ durable consumer goods Fiel diff

10 IPI ­ intermediate goods Fiel diff

11 IPI ­ capital goods Fiel diff

12 IPI ­ food and beverages Fiel diff

13 IPI ­ nonmetallic minerals Fiel diff

14 IPI ­ metalworking Fiel diff

15 IPI ­ automobiles Fiel diff

16 M0 (Bills and coins) BCRA diff

17 M1 BCRA diff

18
Private M2* (includes foreign
currency deposits)

BCRA trend

19 M3 BCRA diff

20
Interest rate on Time Deposits ­
Private Banks

BCRA diff

21
Interest rate on Time Deposits ­
Total Banking system

BCRA diff

22
Interest rate on Time Deposits ­
Total Banking system 30­59 days

BCRA diff

23
Interest rate on Time Deposits ­
Banking system 60 or more  days

BCRA diff

24
Gross Revenue Tax Collection ­ City
of Buenos Aires

Min. Hacienda CABA diff

25 Poultry Production CEPA diff

26 Used Car Sales CCA diff

27 Construction Price Index INDEC diff
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Appendix II:
Estimation Results

Forecasting Models: Dependent Variable - Inflation
Variable AR(1) Phillips Curve Phillips Curve Factor Model

with Money

C 0.00504 0.01581
(0 .00068 ) (0 .00080 )

INFLAt−1 0.21696 0.51567 0.36045
(0 .06524 ) (0 .01052 ) (0 .03580 )

INFLAt+1 0.34558 0.34894
(0 .01233 ) (0 .04003 )

OUTPUTGAP t−1 0.02090 0.01876
(0 .00214 ) (0 .00682 )

NOMDEV 0.02954 0.04834
(0 .00215 ) (0 .00792 )

INFLA* -0.18879 -0.21818
(0 .02199 ) (0 .06701 )

MONEYGAP 0.01223
(0 .00175 )

D13061503*INFLAt−1 0.52341
(0 .06499 )

DUM1401 0.02526
(0 .00408 )

DUM0803 0.01996 0.02109
(0 .00404 ) (0 .00410 )

DUM1002 0.02059 0.02442
(0 .00406 ) (0 .00409 )

DUM1010 0.01503 0.01478
(0 .00404 ) (0 .00412 )

DUM1105 -0.01205
(0 .00408 )

DUM1203 0.01864
(0 .00403 )

D0711305 0.00749
(0 .00102 )

1stFactor t−3 0.00104
(0 .00017 )

2ndFactor 0.00038
(0 .00021 )

standard error in brackets
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Forecasting Models: Monetary VAR

D(MONEY) NOMDEV D(INTRATE) OUTPUTGAP INFLA

D(MONEY(­1)) 0.07230 ­0.35466 ­0.01501 0.03280 ­0.01969
(0.10386) (0.19034) (0.06532) (0.19852) (0.04286)

D(MONEY(­2)) 0.23379 ­0.02453 0.17831 0.31709 0.07203
(0.10019) (0.1836) (0.06301) (0.1915) (0.04135)

D(MONEY(­3)) 0.18482 0.11665 ­0.13506 0.06960 0.05346
(0.10114) (0.18533) (0.06361) (0.1933) (0.04174)

D(MONEY(­4)) ­0.16684 0.64225 0.02292 ­0.29694 0.06469
(0.09825) (0.18005) (0.06179) (0.18779) (0.04055)

D(MONEY(­5)) 0.16151 ­0.26892 ­0.09049 0.43249 ­0.03892
(0.10206) (0.18704) (0.06419) (0.19508) (0.04212)

D(MONEY(­6)) 0.09683 0.02281 0.04784 0.29723 0.07682
(0.1025) (0.18783) (0.06446) (0.19591) (0.0423)

NOMDEV(­1) 0.01076 0.46771 ­0.04165 0.08484 0.00206
(0.05452) (0.09991) (0.03429) (0.1042) (0.0225)

NOMDEV(­2) ­0.09804 ­0.05557 0.01773 ­0.01610 ­0.00797
(0.05924) (0.10855) (0.03726) (0.11322) (0.02445)

NOMDEV(­3) ­0.01761 0.19510 ­0.00797 ­0.12535 0.02995
(0.05535) (0.10143) (0.03481) (0.1058) (0.02284)

NOMDEV(­4) 0.06239 ­0.09132 0.03281 0.24579 ­0.00437
(0.0534) (0.09785) (0.03358) (0.10206) (0.02204)

NOMDEV(­5) 0.00184 ­0.01664 ­0.06523 0.18097 0.00570
(0.05328) (0.09763) (0.03351) (0.10183) (0.02199)

NOMDEV(­6) ­0.01550 0.00940 0.01993 0.06284 0.03787
(0.04829) (0.0885) (0.03037) (0.0923) (0.01993)

D(INTRATE(­1)) ­0.36200 ­0.43129 0.76207 0.16725 0.02536
(0.14157) (0.25944) (0.08904) (0.27059) (0.05843)

D(INTRATE(­2)) 0.33436 0.54099 ­0.31488 ­0.03857 0.04831
(0.14794) (0.27111) (0.09305) (0.28277) (0.06106)

D(INTRATE(­3)) ­0.17055 0.05511 ­0.17018 0.00326 0.04467
(0.13365) (0.24492) (0.08406) (0.25545) (0.05516)

D(INTRATE(­4)) 0.02968 ­0.10612 ­0.00598 0.35874 0.07971
(0.13292) (0.24357) (0.08359) (0.25404) (0.05485)

D(INTRATE(­5)) 0.23387 ­0.09783 0.13378 0.58693 0.05790
(0.13806) (0.253) (0.08683) (0.26388) (0.05698)

D(INTRATE(­6)) 0.00478 0.63751 ­0.18192 ­0.82329 0.03865
(0.11899) (0.21806) (0.07484) (0.22743) (0.04911)

OUTPUTGAP(­1) ­0.03174 ­0.07058 0.08491 0.11292 ­0.03576
(0.0446) (0.08173) (0.02805) (0.08525) (0.01841)

OUTPUTGAP(­2) 0.05979 0.03593 ­0.02910 0.11619 0.00316
(0.04287) (0.07855) (0.02696) (0.08193) (0.01769)

OUTPUTGAP(­3) 0.01294 ­0.17698 ­0.01755 0.24618 0.01974
(0.0402) (0.07366) (0.02528) (0.07683) (0.01659)

OUTPUTGAP(­4) ­0.03270 ­0.02091 0.03059 0.02779 0.01737
(0.04113) (0.07537) (0.02587) (0.07861) (0.01697)

OUTPUTGAP(­5) ­0.06999 0.02477 ­0.03618 0.24261 ­0.01022
(0.04099) (0.07511) (0.02578) (0.07834) (0.01691)

OUTPUTGAP(­6) ­0.07683 0.06845 0.01457 ­0.06690 0.00792
(0.04227) (0.07747) (0.02659) (0.0808) (0.01745)

INFLA(­1) ­0.01693 0.46653 ­0.12039 ­0.30198 0.13018
(0.18715) (0.34297) (0.11771) (0.35771) (0.07724)

INFLA(­2) 0.02321 ­0.88747 0.32206 1.04302 ­0.14652
(0.18752) (0.34364) (0.11794) (0.35842) (0.07739)

INFLA(­3) 0.18213 ­0.05812 0.10118 ­0.25345 0.13457
(0.1816) (0.33279) (0.11421) (0.34709) (0.07495)

INFLA(­4) 0.13797 0.21503 ­0.10038 0.40073 ­0.07783
(0.17685) (0.32409) (0.11123) (0.33802) (0.07299)

INFLA(­5) ­0.05341 0.01845 ­0.28470 ­0.78573 0.10363
(0.17689) (0.32416) (0.11125) (0.33809) (0.073)

INFLA(­6) ­0.11379 ­0.30704 0.25256 0.01832 ­0.03450
(0.17008) (0.31167) (0.10697) (0.32507) (0.07019)

Dependent variable
Variable

plus a constant and dummy variables 15
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Appendix IV

Table A.1: Giacomini-White test Sample:2011:1-2015:3 (N = 50) - MAPE

 t­stat. p­value  t­stat. p­value  t­stat. p­value  t­stat. p­value

Phillps Curve vs AR 2.7904 0.0075 2.6324 0.0114 3.3457 0.0017 3.1720 0.0030

Phillips Curve with Money
vs AR

2.5634 0.0135 2.4468 0.0182 4.1337 0.0002 2.6731 0.0110

Principal Components vs
AR

3.1093 0.0031 3.0856 0.0034 3.2589 0.0022 2.7039 0.0102

VAR vs AR 3.2033 0.0024 3.2116 0.0024 3.5347 0.0010 3.6298 0.0008

VAR vs Phillps Curve 3.9620 0.0002 3.1624 0.0027 4.2146 0.0001 3.2384 0.0025

VAR vs Phillips Curve with
Money

3.5112 0.0010 3.7584 0.0005 3.2683 0.0021 3.1900 0.0028

VAR vs Principal
Components

4.0772 0.0002 4.2443 0.0001 4.4590 0.0001 2.5248 0.0159

Phillips Curve with Money
vs Phillips Curve

3.9745 0.0002 1.3676 0.1779 1.2197 0.2291 1.5276 0.1349

Phillips Curve with Money
vs Principal Components

3.4158 0.0013 3.8860 0.0003 3.8471 0.0004 3.0296 0.0044

Phillips Curve vs Principal
Components

3.4905 0.0010 4.0565 0.0002 3.7040 0.0006 2.9692 0.0051

6 months 12 monthsModels 1 month 3 months
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