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Abstract

This paper checks out the sensibility of indirect tax evasion models to
assumptions about: i) tax function, ii) audit probability function, iii) risk
aversion and iv) how tax evasion decisions occur. We found out that under
perfect competition: i) the optimum level of tax evasion for ad valorem
and specific taxes are equal but static comparative are not, ii) ad valorem
tax evasion is lowest if the audit probability is decreasing with respect
to the firm output, iii) risk aversion models produce similar results than
direct cost of evasion models, but results are more conclusive when the
risk is additive. JEL Classification: H25, H26.

Resumen

Este trabajo testea la sensibilidad de los resultados de los modelos de
evasión para impuestos indirectos a los supuestos acerca de: i) el impuesto
considerado, ii) la probabilidad de auditoria, iii) aversión al riesgo y iv)
como sucede la evasión impositiva. Se demuestra que i) el nivel optimo de
evasión impositiva es similar bajo impuestos ad valorem o específicos, pero
la estática comparativa no, ii) la probabilidad de auditoria decreciente
respecto al nivel de producción es óptima, iii) los modelos de aversión
al riesgo producen resultados similares a los que incluyen una función de
costos de la evasión. JEL Classification: H25, H26.
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1 Introduction1

Although there is economic literature about tax evasion as old as one would
look for, the issue has become a subfield of public finance only during the last 30
years. In their pioneering work, Allingnam and Sandmo (1972) applied some, at
that time, recent developments in the economics of uncertainty -Arrow (1970)-
and the economics of crime -Becker (1968)- to analyze the individual taxpayer’s
decision on whether and to what extent to avoid the income tax by deliberate
underreporting. That paper was concerned on direct taxes, those paying by an
individual.

Researchers’ interest on direct taxes, as opposed to indirect taxes, has been
predominant and the literature is much wider.2 This is so maybe reflecting
that, empirically, direct taxes represent the bulk of developed countries tax
revenues and, theoretically, in a microlevel analysis, any economic agent (such
as a firm paying indirect taxes) could be reduced to an individual, the only
decision makers that we could think off, and therefore, the direct tax evasion
could be applied easily to an entrepreneur.

However, indirect tax evasion present many distinctive questions, but the
research has been much fewer. Necessary references are Marelli (1984), Wang
and Conant (1988), Virmani (1989), Yaniv (1988), Cremer and Ghavari (1994)
and Yaniv (1995).

In our understanding, a key feature of this indirect tax evasion literature is
that their results are very divergent according to each model’s assumptions. In
fact, some assumptions are not always explicit and it is not clear what would
happen with results under different key assumptions. Many questions would
arise and one could think off many different theoretical exercises.

In this paper we will do some of these exercises, changing key assumptions
and checking out whether the results will change or not. In particular, we will
focus on three issues that might be very relevant for public policy:

- A comparison among different indirect taxes on: i) Pareto optimum under
tax evasion, ii) tax evasion equilibrium.

- Policy tools effect on the tax evasion optimum. Here we have at least three
policy tools: tax rates, audit probabilities and fines. To study the effect of the
former on tax evasion. is particularly interesting. On the other side, the effect of
audit probability and fines are quite intuitive and they just have to be checked
out to ensure models’ consistency

- Separability between output and tax evasion decisions. This is a very
important issue in order to evaluate the efficiency effects of tax evasion. From

1I would like to thank to Walter Cont and Diego Fernandez Felices for many suggestions
and comments about this research field and to participants in a Seminar at the Departamento
de Economía of the Universidad Nacional de la Plata for their intriguing questions.

2Recent direct tax evasion literature reviews are Andreoni, Erard and Feistein (1998),
Franzoni (1998), Alm (1999), Slemrod and Yitzhaki (2000) and Cowell (2003).
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an economic point of view, the most pervasive effect of tax evasion is not the
revenue lost by government (which is just a resources transfer from public sector
to private) but the inefficiency implied when firms with higher production cost
than average remain in the market because they conceal real revenues. However,
this argument is valid only when there in any effect of tax evasion on output,
which is not the case in most tax evasion models. As we will see, the exception is
Virmani (1989), but its assumptions about the audit probability function make
the model very unusual and it is difficult to generalize it.

In the first section, we will first summarize the literature. Next, we will
present a basic model (the standard model) and then we will begin testing the
results trough changing assumptions in order to answer our questions. We close
the paper with concluding remarks.

2 Background
Marrelli (1984) made the first application of the economics of uncertainty to
indirect tax evasion His objective was to study an entrepreneur’s decision on
whether, and to what extent, to avoid indirect taxes by underreporting, limiting
the analysis to the case of a monopolistic firm and to ad valorem and profit taxes.
In particular, the monopolistic market framework allow him to study the degree
of interdependence between the tax shifting and the tax evasion decisions, with
risk averse entrepreneurs, both in the case of fixed and variable probability
of being detected. The main, and surprising, Marrelli’s result was that tax
evasion has no influence on the shifting of the tax and, therefore, the after-tax
marginal conditions for profit maximization are the same as those occurring in
the absence of any evasion: the shifting and evasion problems are separable.
The comparative static analysis were similar to the A-S model, but for the tax
rate.

Marrelli examines also two alternative rules under which the probability
of detection is function of the tax base declared (increasing and decreasing
functions) and he founds that the problems of tax shifting and tax evasion are no
longer separable, the equilibrium quantity depends on the optimal interior rate
of tax declaration, and vice versa. A decreasing function is more efficient, the
monopolist both produce and declare more than in the case of a fixed probability
of detection. The paper deals with sales tax (ad valorem tax), but there is also
a comparison between a sales tax and a profit tax of equal yield. Marrelli shows
that if we assume decreasing absolute risk aversion, an ad valorem tax is evaded
as a percentage less than a profit tax of equal yield.

Same issues are examined under imperfect competition (duopoly with quan-
tity setting firms) in Marrelli and Martina (1988). Three different tax functions
are used (profit, ad valorem and specific tax) to study the impact of collusion
and market shares on tax evasion. The model is built for risk averse taxpayers
which have to decide on an amount to be concealed. In the latter, the paper
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goes back to the original Allinghan and Sandmo scheme. Results on separabil-
ity are stronger than those of monopoly, since separability holds also on corner
solutions. The origin of this is not duopoly but how the evasion is shaped (as
an amount and not a tax due percentage). Comparative statics show similar
qualitative results of policy parameters to those of monopoly.

Wang and Conant (1988) present a model for a risk averse monopolistic
firm that can evade profit tax liability by cost overstatement. It is shown that
neither the profit tax rate nor the penalty rate affect the profit maximizing rate
of output. So, separability holds. The main difference with Marrelli (1984) is
how tax evasion occurs, but assumptions and results are the same. Regarding to
comparative statics analysis, in their model an increase in the tax rate and/or
the probability of detection reduce the optimum level of tax evasion.

Yaniv (1988) is the first analysis of tax evasion within a withholding tax
system, which account for the major part of income tax liability (and also of
corporate taxes) in many countries The analysis represents a mix between
corporate and personal taxes. In this model, there are two kinds of tax evasion:
i) the withholding tax system provides incentives for withholding agents to
remit to the government less than the amounts withheld, ii) the conventional
underreporting of the tax base (for non-withheld taxes). The model deals with
a competitive and risk averse employer who is required to withhold a given
proportion of total wage payments. There is also a profit tax, so it must be
considered that understatement of wage payments results in overpayment of
profit taxes. Main results are that optimal employment level is independent of
fraud behaviour as long as the latter is optimal (separability) and an increase
in the law enforcement parameters would discourage tax fraud. The analysis
is very simple and some assumptions very strong: it assumes that withholding
tax rates do not affect profits and that under both systems (with and without
withholding regulations) audit probabilities are equal.

Virmani (1989) incorporates ad valorem tax evasion to the standard model
of partial equilibrium in a competitive market, with free entry, U shaped average
cost curves and risk neutral entrepreneurs. The model has two important char-
acteristics: i) it assumes that probability of detection increases with firm output
and ii) it includes a concealment cost function which depends on the proportion
of sales declared. These two features made static comparative analysis quite
different from previous results: evasion in this model is shown to be associated
with production inefficiency (separability does not hold), evasion may increase
with a rise in penalties and will be positively and production negatively related
to tax rates (Laffer curve). Some papers after Virmani (1989) included the di-
rect cost of evasion, and in fact, with risk neutral firms, it is necessary to get
inner solutions. Separability does not hold because output level will affect the
probability of detection and, therefore, tax evasion’s pay off. Increasing proba-
bility of detection, although might be a common feature of real audit strategies,
is a dominated strategy so they are not very common in the literature.3

3See Section 4.2.
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Cremer and Ghavari (1994) present also a model of specific tax evasion but
to study the more general issue of optimal taxation under tax evasion. The ob-
jective is to incorporate tax evasion in Ramsey’s formulation of a tax structure.
The idea behind is that any effective tax rate could be reached changing the
tax code but also setting policy parameters (such as audit probability), so the
Ramsey’s problem of taxation can clearly be enriched considering tax evasion.
Although the main objective are neither tax evasion optimum nor policy tool
effects, these issues are treated. Market are competitive and, after Virmani
(1989), it incorporates a direct cost of evasion function. Since this function is
proportional to production and the audit probability is fixed, separability holds.
Changes on the probability of detection and fines have the expected effect.

Yaniv (1995) presents a general model of tax evasion applicable to any type
of tax that might be evaded by the firm, either through underreporting its
tax base or overreporting allowed deductions. Firms are risk averse and face
a proportional tax imposed on a certain tax base. As in Marrelli and Martina
(1988) the activity decision is independent of the firm’s attempt to evade taxes
by misreporting, even for corner solutions, since the evasion decision is about an
amount and not a proportion. An increase in the tax rate will always diminish
the firm’s statement deviation form the true value of its tax base, but we need
to assume decreasing absolute risk aversion.

Summing up this literature, it is clear that key assumptions have very im-
portant effects on the results. In particular, assumptions made about:

- Market competition.

- Tax function.

- Concealment cost functions.

- Attitudes toward risk.

- Probability of detection function.

- Tax evasion as a percentage or an amount.

In the next Table, we present a summary of these differences.
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 Tax Audit 
Probabi-

lity  

Market Risk Evasion 
Direct 
Cost 

Evasion 

Marrelli (1984) - Ad Valorem 
- Profit  

- Fixed 
- Variable 

- Monopoly - Averse No Percentage 

Wang and 
Conant (1988)* 

- Profit  - Fixed 
 

- Monopoly - Averse No Percentage 

Marelli and 
Martina (1988) 

- Profit  
- Ad Valorem 
- Specific 

- Fixed 
- Variable 

- Duopoly - Averse No Amount 

Yaniv (1988)+ - Profit 
- Withholding  

- Fixed - Monopoly - Averse No Percentage 

Virmani (1989) - Ad Valorem - Variable - Competitive - Neutral Yes Percentage 

Cremer y 
Ghavari (1994) 

- Specific - Fixed 
 

- Competitive - Neutral Yes Percentage 

Yaniv (1995) - Proportional 
on certain base 

- Fixed - Monopoly - Averse No Amount 

    *Evasion trough cost overstatement.  
    +Evasion of tax withholdings.  

3 Basic Model
We will present a model for the ad valorem tax, in a competitive market. The
firm can underreport its sales in order to pay less tax. The government does not
know real revenues, but it will audit several firms and tax evasion is punished
with a fine. The firm is risk neutral. Tax evasion has a direct cost for the firm.
Under these conditions, the firm will want to maximize expected profits:

Maxα,xE[Π] = (1− φ)Πnd + φΠd (1)

Πnd = R− C −Rtα− g(1− α)x(p) (2)

Πd = Πnd −Rt(1− α)f (3)

Where:

φ = Tax evasion detection probability (audit probability). We assume here
that the audit rule is random (every firm faces the same audit probability).4

Πnd = Profit if the tax evasion is not detected. It occurs with probability
(1− φ).

Πd = Profit if tax evasion is detected. It occurs with probability φ.

R = px(p) = Total Revenues.

4Random audit rules are obviously not very realistic. We are aware of the literature about
audit rules, but we stick on this assumption in order to get clear cut results. See Arias (2004).

6



C = cx(p) = Total Cost. We assume that firms exhibit constant marginal
cost (c).

c = Average and Marginal Cost.

t = Sales tax (ad valorem).

α = Proportion of sales reported.

g(1− α) = Direct tax evasion cost, which will depend on the proportion of
sales reported. It is monotonic increasing and strictly convex function g0(1−α) >
0; g00(1 − α) > 0.We could presume that g(1) = ∞ and g(0) = 0. To clarify,
we could assume also that g(1− α) = (1− α)G(1− α), where G(1− α) is also
a monotonic increasing and strictly convex function.

f = Penalty (f > 1).

x(p) = Output.

p = Price.

Replacing (2 ) and (3 ) in the expected profit equation (1 ), we have:

E[Π] = (1− φ)[R− C −Rtα− g(1− α)x(p)] +

+φ[R− C −Rtα− g(1− α)x(p)−Rt(1− α)f ]

E[Π] = R− C −Rtα− g(1− α)x(p)− φf [Rt(1− α)] (4)

From this equation we can see that the firm will underreport its sales if and
only if φf < 1; in any other case it is always profitable to report all the revenues
(even if the concealment cost would be cero). Henceforth, we will assume:

φf < 1 (5)

We could express equation (4 ) in unit terms:

E[Π] = [p− c− ptα− g(1− α)− φ[pt(1− α)f ]]x(p)

This equation can be rewritten as:

E[Π] = [p− c− g(1− α)− pt[α+ φ[(1− α)f ]]]x(p) (6)

We define,

w ≡ g(1− α) + pt[α+ φ[(1− α)f ]]

So, equation (6 ) is equal to:

E[Π] = [p− c− w]x(p)
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Certainly, to maximize E[Π] is similar to minimize w. As w is independent of
x(p), this implies that the production decision is independent of the tax evasion
decision5, this is that stays the "separability" condition.

First order condition is:

∂w

∂α
= −g0(1− α) + pt− ptφf ≤ 0

g0(1− α) ≤ pt(1− φf) (7)

So, the optimum α will be where the marginal cost of evasion is equal to the
marginal benefit of tax evasion. In this case, the latter is fixed so, as long as
φf < 1 there will be an inner solution.

Second order condition is:

∂2w

∂α2
= g00(1− α) > 0 (8)

Which is consistent with the assumptions made regarding to the function
g(1− α). Market equilibrium will be:

p(1− te) = c+ g(1− α) (9)

p =
c+ g(1− α)

1− te

Where:

te = t [α+ φ(1− α)f ] (10)

In equation (9 ) g and te are evaluated at the optimal values of α. Total
government revenues will be:

R = tepX(p)

3.1 Comparative Static Analysis

Differentiating equations (7 ), (9 ) and (10 ), and using the inequalities (5 ) and
(8 ) we can obtain the following results of comparative statics with respect to
the tax rate6:

∂α

∂t
= −p(1− φf)

g00(1− α)
< 0 (11)

∂te

∂t
= (α+ φ(1− α)f)− (1− φf)2pt

g00(1− α)
≷ 0 (12)

∂p

∂t
= α+ (1− α)φf + (p− 1)(1− φf)2pt

g00(1− α)
≷ 0 (13)

5The inverse does not hold.
6 See Appendix for detailed computations of these equations.
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With respect to the audit probability:

∂α

∂φ
=

ptf

g00(1− α)
> 0 (14)

∂te

∂φ
=

(1− φf)pt2f

g00(1− α)
+ tf(1− α) > 0 (15)

∂p

∂φ
= (1− p)

(1− φf)pt2f

g00(1− α)
+ tf(1− α) ≷ 0 (16)

With respect to the fine:

∂α

∂f
=

ptφ

g00(1− α)
> 0 (17)

∂te

∂f
=

(1− φf)pt2φ

g00(1− α)
+ (1− α)φt > 0 (18)

∂p

∂f
= (1− p)

(1− φf)pt2φ

g00(1− α)
+ (1− α)φt ≷ 0 (19)

From this comparative analysis, we can draw the following conclusions:

- Public policy tools have the expected impact on tax evasion -equations (11
), (14 ) and (17 )-.

- The fine and the audit probability are perfect substitutes -equations (14
)-(16 ) versus (17 )-(19 ).

- Tax rates could have a negative impact on expected tax rates, since the
positive effect on tax evasion (12 ).

- Tax rates could have also a negative impact on prices. Moreover, there is
no any limit in the price elasticity of a tax rate change (equation 13 ).

- Audit probabilities and fines could have a positive or a negative impact on
prices -equations (16 ) and (19 ).

We will expand on these results in the next section.

4 Extensions

4.1 Comparison among different tax functions

Under conditions of perfect competition and no tax evasion, specific and ad
valorem taxes have identical effects, whereas under imperfect competition and
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monopolies, specific taxes are generally dominated by ad valorem taxes, in terms
of Pareto’s optimum.7 Besides, with no tax evasion, there is a conventional view
that profit taxes are neutral respect to a monopolist’s profit maximizing rate of
output, but ad valorem and specific tax are not.

It would be very interesting to check out whether these results remain under
tax evasion. In order to do so, the results of optimal underreporting for different
taxes of equal theoretical collection could be compared8.

At least, there could be applied three possible tax functions in order to
compare production levels, tax evasion optimum and the separability condition
under each tax function. Tax functions are:

Ad Valorem Tax: t = tpx(p)

Specific Tax: t = tx(p)

Profit Tax: t = t(p− c)x(p)

The ad valorem and the specific tax are available in any market, but the
profit tax is meaningful only for monopoly and imperfect competition, since
there are no profit under perfect competition. So possible comparisons are:

i) Ad valorem vs specific tax under competition.

ii) Ad valorem vs specific tax under monopoly.

iii) Ad valorem vs profit tax under monopoly.

iv) Specific tax vs profit tax under monopoly.

Some of these comparisons have been done by Marrelli (1984) and by Marrelli
and Martina (1988). As we have seen, in both papers the comparison is not
intended for perfect competition, but for monopoly and duopoly. Moreover,
in those models taxpayer is risk averse and there is no a direct evasion cost
function. So, in this document we will only do the comparison regarding to
perfect competition.

4.1.1 Ad valorem versus specific tax under perfect competition

To begin with, we assume that fines, audit probability and the cost of the evasion
are identical in both cases. Let us remember that, for the case of a specific tax,
following Cremer and Ghavari, first order conditions imply:

g0(1− β) = τ(1− φf) (20)

Where:

τ = Specific tax.

7See i.e. Anderson, de Palma and Kreider (2000).
8Another criteria would be to compare different taxes of equal total tax revenues under

the optimal tax evasion rates. Both are equally valid.
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β = Proportion of sales reported.

And for ad valorem tax (equation 7 ):

g0(1− α) = pt(1− φf)

In first place, we will fix the specific tax rate making it equal to τ ; with
which we have determined the theoretic collection in:

R = τX(p)

Condition to meet is:

tpX(p) = τX∗(p∗)

We know that X∗ =
P

x∗(p∗). Each x∗(p∗) been quantities and prices of
equilibrium. Since under perfect competition separability holds in both models,
quantities and then prices are equal to X and p.

This implies that:

tp = τ (21)

Observing the equations of determination of the optimal values of evasion
under each tax, equations (7 ) and (20 ), this last equality implies that:

α∗ = β∗ (22)

Finally the price will also be the same one in both cases.

Comparing equations (11 )-(16 ) with Cremer and Ghavari’s equations (9a),
(9b), (9c), (10a), (10b), (10c), we could see the qualitative differences in com-
parative statics between ad valorem and specific taxes:

Specific Tax Ad Valorem Comparison
∂α

∂t
< 0 < 0 =

∂te

∂t
≷ 0 ≷ 0 =

∂p

∂t
> 0 ; < 1 ≷ 0 6=

∂α

∂φ
> 0 > 0 =

∂te

∂φ
> 0 > 0 =

∂p

∂φ
> 0 ≷ 0 6=
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Discrepancies are the effect of the audit probability, fines and tax rates on
prices. In fact, under the partial equilibrium model of ad valorem tax evasion,
the most interesting result is that tax rates could have a negative impact on
prices. The reason for this is that this effect depends on the effect of tax rates
on i) evasion cost and ii) expected tax rate. The effect on the evasion cost is
positive (the higher tax rate, the higher tax evasion and, therefore, the higher
the per unit evasion cost). The effect on the expected tax rate is twofold: there
is a direct and positive effect but there is also an indirect and negative effect,
since a higher tax rate implies higher evasion and therefore a lower expected tax
rate. So the final impact of the tax rate on expected tax rates will be uncertain.

Of course, this implies that the effect of tax rates on prices will also be
uncertain, an increase on tax rates could imply a decrease on prices, as long
as the increase on the evasion could overcome the increase on the tax evasion
direct cost plus the direct effect of the tax rate on the expected tax rates. If we
see equation (13 ), we will note that:

if p > 1⇒ ∂p

∂t
> 0

if p < 1⇒ ∂p

∂t
≶ 0

if p = 1⇒ ∂p

∂t
= α+ (1− α)φf > 0

In the latter, the tax rate indirect effect on expected tax rate is equal to the
effect on the evasion cost, so they compensate each other. This is the case for a
commodity tax. The impact on the prices of the tax rate is always positive and

less than 1 (Cremer and Ghavari’s equation 9c:
∂p

∂t
= α+ (1− α)φf ).

A very similar situation happens with the effect of audit probabilities and
fines on prices. Since audit probability (and fines) have a direct and an indirect
(trough changes on tax evasion) effect on the expected tax rate, the final effect
will be uncertain. In commodity tax, this effect is always positive (Cremer

and Ghavari’s equation 10c:
∂p

∂φ
= tf(1 − α),) since the indirect effect on the

expected tax rate and the effect on evasion cost are equal.

4.2 Variable audit probability

The idea of a fixed audit probability is not very realistic. In fact, there is a
specific literature subfield about audit rules in an strategic environment. Here,
we will study the effects of a variable audit probability on the model results.
We will assume φ(x). In this case, the expected profit function (?? ) is:

E[Π] = [p− c− ptα− g(1− α)− φ(x)[pt(1− α)f ]]x(p) (23)

Of course, in this model the condition of "separability" will not hold. Changes
in the level of output will affect the expected tax rate and therefore the optimum
level of tax evasion.

12



The firm will maximize equation (23 ) with respect to α and x. So, regarding
to x :

∂E[Π]

∂x
= p− c− g(1− α)− pt(α+ φ(1− α)f − ptφ0(1− α)fx(p) ≤ 0 (24)

We define:

φm = φ+ φ0x(p)
tem = t[α+ (1− α)φmf ] (25)

Replacing (25 ) in (24 ), first order condition will be:

∂E[Π]

∂x
= p(1− tem)− c− g(1− α) ≤ 0

And with respect to α:

∂E[Π]

∂α
= [−pt+ g0(1− α) + φfpt]x(p)

∂E[Π]

∂α
= [g0(1− α)− pt(1− φf)]x(p) ≤ 0

g0(1− α) = pt(1− φf)

Market equilibrium will be:

p =
c+ g(1− α)

1− tem
(26)

An interesting question is to compare the level of tax evasion under this
three configurations:

i) α∗1 with φ0 = 0 (fixed audit probability)

ii) α∗2 with φ0 > 0

iii) α∗3 with φ0 < 0

For the first case, tem = te and equation (26 ) is equal to (10 ). In case
(ii), tem > te and, since prices are exactly the same in both models, we need
that g(1− α∗2) > g(1− α∗1), which implies α∗2 < α∗1: tax evasion will be greater
under an increasing audit probability, than the tax evasion with fixed audit
probability. Case (iii) is optimum from public policy, since tax evasion will be
lower.
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4.3 Attitudes toward risk

It is quite possible a straight forward application of Allingnam and Sandmo
model to tax evasion by firms. Risk aversion would generate an increasing cost
of evasion (the risk premium) that does not exist for risk neutral agents, so there
would not be a need for direct cost of evasion functions to get inner solutions.
Results will be similar to A-S, and separability will hold under some specific
conditions. This configuration allows to study the original A-S scheme where
tax evasion was not proportional to the tax base, but an amount. We will do
the exercise for both cases.

We need to assume that the Utility Function is concave (U 0(Π) > 0 and
U 00(Π) < 0) and we will use the absolute Arrow-Pratt risk aversion measures:

RA(Π
nd) = −U

00(Πnd)
U 0(Πnd)

RA(Π
d) = −U

00(Πd)
U 0(Πd)

In particular, we need to assume that absolute risk aversion is decreasing
with Π. So RA(Π

d) > RA(Π
nd).

4.3.1 Evasion as an amount

If available income is the only argument of the utility function, taxpayers max-
imize:

MaxαE(U) = (1− φ)U(Πnd) + φU(Πd)

Πnd = R− C −Rt+ S

Πd = R− C −Rt+ S − fS

Where S is the total amount of taxes that the taxpayer conceals (0 < S <
Rt). First and second order conditions are9:

(1− φ)

φ(f − 1) ≥ U 0(Πd)
U 0(Πnd)

(27)

(1− φ)U 00(Πnd) + φ(1− f)2U 00(Πd) ≤ 0 (28)

Second order condition is satisfied because of the assumptions we made about
U. The comparative statics results are a little more difficult to obtain since it
appears as an important element the shape of U. For example, if we would like
to know the reaction of tax evasion from a change on tax rate, probabilities and
fines we will find out:

9See computations in Appendix.
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∂S

∂t
=

R

D
φ(1− f)U 0(Πnd)

£
RA(Π

nd)−RA(Π
d)
¤ ≤ 0 (29)

∂S

∂φ
= −U

0(Πnd)− U(Πd)(1− f)

D
≶ 0 (30)

∂S

∂f
=

U(Πd)

D
≤ 0 (31)

Where D is the second order condition (equation 28 ). The first expression
is negative if and only if we assume decreasing absolute risk aversion.10

4.3.2 Evasion as an percentage

Objective function is now:

MaxαE(U) = (1− φ)U(Πnd) + φU(Πd)

Πnd = R− C −Rtα

Πd = R− C −Rtα−Rt(1− α)f

First and second order conditions are:

(1− φ)

φ(f − 1) ≥ U 0(Πd)
U 0(Πnd)

(32)

(1− φ)U 00(Πnd)(−Rt)2 + φU 00(Πd)(1− f)2(−Rt)2 ≤ 0 (33)

In this case, the effect on tax evasion of policy parameters are:

∂α

∂t
= −R

2t

D
φ(1− f)U 0(Πnd)RA(Π

nd)(α+ (34)

= ...+ (1− α)f)−RA(Π
d)] ≶ 0

∂α

∂φ
= −Rt

D

£
U 0(Πnd)− U 0(Πd)(1− f)

¤
≷ 0 (35)

∂α

∂f
= −U

0(Πd)Rt
D

≥ 0 (36)

An important results is that, when the risk is multiplicative and not additive,
there is no a clear effect of the tax rate on the tax evasion behavior (equation
34 ) Remaining results are equal (equations 30 -31 versus 35 -36 ).

10Note that in this case D ≤ 0; (1− f) ≤ 0 and £RA(Π
nd)−RA(Π

d)
¤
< 0.
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5 Final Comments
Models presented here allow us to answer, partially, our questions:

- The firm’s activity level is independent of the tax evasion (which is not
the case for direct taxes and labor-supply decisions) only if we assume a fixed
probability of detection.

- Risk aversion and concealment cost function are perfect substitutes in mod-
els.

- Ad valorem and unit taxes produces the same tax evasion optimum results
under competitive markets. However, comparative statics results differs on the
effects on prices.

- Decreasing probability of detection is optimum.

- Under risk aversion models, to get clear results about the reaction of tax
evasion to a change on tax rates it is necessary to model the tax evasion as an
amount.

The literature is growing fast (review by Cowell, 2004) and many models in-
cludes some issues that we have not touched, such as credit constrains, imperfect
detection, corruption, agency problems within the tax administration, agency
problems within the firm, strategic environment and audit rules, alternatives
to the Expected Utility paradigm (like state dependent utility), arguments of
the utility function (public goods), social norms and interdependence, temporal
models, other kinds of uncertainty, etcetera.

There are other issues that remain almost untouched in the literature i.e. i)
very weak analysis of withholding tax systems.11 There is no analysis of with-
holding systems for indirect taxes. ii) The analysis of multiples and simultane-
ous corporate taxes is also very limited (profit, withholding and commodity),
iii) welfare effects under tax evasion, iv) general equilibrium models.

Likewise, there are many of ways in which this paper could be extended. A
comparison among different tax functions under other market configurations is
probably the most interesting, but clearly not the only one.

11Yaniv (1988) assumption that Πt = 0 and the same probability of detection for employers
and employees are very unrealistic.
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Appendix

Equation (11 ,
∂α

∂t
) Differentiating (7 ):

g0(1− α) = pt(1− φf)

∂g0(1− α)

∂α

∂α

∂t
= p(1− φf)

∂α

∂t
= −p(1− φf)

g00(1− α)

Equation (12 ,
∂te

∂t
) From (10 ):

te = t [α+ (1− α)fφ] = tA

∂te

∂t
= t0A+A0t

A0 =
∂(α+ φ(1− α)f)

∂α

∂α

∂t

A0 = (1− φf)(−p(1− φf)

g00(1− α)
)

A0 = −p (1− φf)2

g00(1− α)

∂te

∂t
= α+ φ(1− α)f − (1− φf)2pt

g00(1− α)
≶ 0

Equation (13 ,
∂p

∂t
) From (9 ):

∂p

∂t
=

∂g(1− α)

∂t
+

∂te

∂t

∂g(1− α)

∂t
=

∂g(1− α)

∂α

∂α

∂t

= g0(1− α)
p(1− φf)

g00(1− α)
> 0

∂p

∂t
= g0(1− α)

p(1− φf)

g00(1− α)
+ α+ φ(1− α)f − (1− φf)2pt

g00(1− α)

Using equation (7 ):

18



∂p

∂t
=

p2(1− φf)2t

g00(1− α)
+ α+ φ(1− α)f − (1− φf)2pt

g00(1− α)

∂p

∂t
= (p− 1)(1− φf)2pt

g00(1− α)
+ (α+ φ(1− α)f)

Equation (14 ,
∂α

∂φ
). Differentiating (7 )

∂g0(1− α)

∂α

∂α

∂φ
= −ptf

∂α

∂φ
=

ptf

g00(1− α)

Equation (15 ,
∂te

∂φ
). Differentiating (10 )

∂te

∂φ
= t

·
∂α

∂φ
+

∂(φf)

∂φ
− ∂(φfα)

∂φ

¸
∂te

∂φ
= t

·
ptf

g00(1− α)
+ f

£
1− (α0φ+ αφ0)

¤¸
∂te

∂φ
= t

·
ptf

g00(1− α)
+ f(1− ptfφ

g00(1− α)
− α)

¸
∂te

∂φ
= t

·
ptf

g00(1− α)
+ f(1− α)− ptf2φ

g00(1− α)

¸
∂te

∂φ
=
(1− φf)pt2f

g00(1− α)
+ tf(1− α)

Equation (16 ,
∂p

∂φ
). From (9 )

∂p

∂φ
=

∂g

∂φ
+

∂te

∂φ

∂p

∂φ
= −g0(1− α)

∂α

∂φ
+

∂te

∂φ

∂p

∂φ
= −g0(1− α)

ptf

g00(1− α)
+
(1− φf)pt2f

g00(1− α)
+ tf(1− α)

∂p

∂φ
= −pt(1− φf)

ptf

g00(1− α)
+
(1− φf)pt2f

g00(1− α)
+ tf(1− α)

∂p

∂φ
= (1− p)

·
(1− φf)pt2f

g00(1− α)

¸
+ tf(1− α)

Equation (17 ,
∂α

∂f
). From (7 )
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∂g0(1− α)

∂α

∂α

∂f
= ptφ

∂α

∂f
=

ptφ

g00(1− α)

Equation (18 ,
∂te

∂f
). From (10 )

∂te

∂f
= t

·
∂α

∂f
+

∂(φf − αφf)

∂f

¸
∂te

∂f
= t

·
ptφ

g00(1− α)
+ φ

∂(f − αf)

∂f

¸
∂te

∂f
= t

·
ptφ

g00(1− α)
+ φ(1− (α0f + αf 0)

¸
∂te

∂f
= t

·
ptφ

g00(1− α)
+ φ(1− ( ptφ

g00(1− α)
f + α)

¸
∂te

∂f
= t

·
ptφ

g00(1− α)
+ (1− α)φ− φ(

ptφ

g00(1− α)
f)

¸
∂te

∂f
= t

·
(1− α)φ+ (1− φf)

ptφ

g00(1− α)

¸
∂te

∂f
= (1− α)φt+

(1− φf)pt2φ

g00(1− α)

Equation (19 ,
∂p

∂f
). From (10 )

∂p

∂f
=

∂g

∂f
+

∂te

∂f

∂p

∂f
= −g0(1− α)

∂α

∂f
+

∂te

∂f

∂p

∂f
= −g0(1− α)

ptφ

g00(1− α)
+ (1− α)φt+

(1− φf)pt2φ

g00(1− α)

∂p

∂f
= −pt(1− φf)

ptφ

g00(1− α)
+ (1− α)φt+

(1− φf)pt2φ

g00(1− α)

∂p

∂f
= (1− p)

(1− φf)pt2φ

g00(1− α)
+ (1− α)φt

Equation (27 ). First Order Condition
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∂E(U)

∂S
= (1− φ)U 0(Πnd)

∂Πnd

∂S
+ φU 0(Πd)

∂Πd

∂S
≤ 0

∂E(U)

∂S
= (1− φ)U 0(Πnd) + φU 0(Πd)(1− f) ≤ 0 (37)

−(1− φ)U 0(Πnd) ≥ φU 0(Πd)(1− f)

(1− φ)

φ(f − 1) ≥
U 0(Πd)
U 0(Πnd)

Equation (28 ). Second Order Condition:

∂2E(U)

∂S2
= (1− φ)U 00(Πnd)

∂Πnd

∂S
+ φU 00(Πd)

∂Πd

∂S
(1− f) ≤ 0

∂2E(U)

∂S2
= (1− φ)U 00(Πnd) + φ(1− f)2U 00(Πd) ≤ 0

Equation (29 ,
∂S

∂t
). Total differentiating FOC (37 )

d = (1− φ)U 0(Πnd) + φU 0(Πd)(1− f)

∂S

∂t
= − dt

dS

dt = (1− φ)U 00(Πnd)(−R) + φU 00(Πd)(1− f)(−R)
dS = D

∂S

∂t
= −(1− φ)U 00(Πnd)(−R) + φU 00(Πd)(1− f)(−R)

D
∂S

∂t
=

R

D

£
φ(1− f)U 00(Πd) + (1− φ)U 00(Πnd)

¤

Where D is the second order condition. We know from (37 ) that:

(1− φ) = −φ(1− f)
U 0(Πd)
U 0(Πnd)

Replacing:

∂S

∂t
=

R

D

·
φ(1− f)U 00(Πd)− φ(1− f)

U 0(Πd)
U 0(Πnd)

U 00(Πnd)
¸

∂S

∂t
=

R

D
φ(1− f)U 0(Πd)

·
U 00(Πd)
U 0(Πd)

− U 0(Πnd)
U 0(Πnd)

¸
∂S

∂t
=

R

D
φ(1− f)U 0(Πnd)

£
RA(Π

nd)−RA(Π
d)
¤ ≤ 0
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Equation (30 ,
∂S

∂φ
). Total differentiating (37 ):

d = (1− φ)U 0(Πnd) + φU 0(Πd)(1− f)

∂S

∂φ
= −dφ

dS

dφ = −U 0(Πnd) + U 0(Πd)(1− f)

dS = D

∂S

∂φ
= −U

0(Πnd)− U(Πd)(1− f)

D
≶ 0

Equation (31 ,
∂S

∂f
). Total differentiating (37 ):

d = (1− φ)U 0(Πnd) + φU 0(Πd)(1− f)

∂S

∂f
= −df

dS

df = −U 0(Πd)
dS = D

∂S

∂f
=

U(Πd)

D
≤ 0

Equation (32 ). First Order Condition:

∂E(U)

∂α
= (1− φ)U 0(Πnd)

∂Πnd

∂α
+ φU 0(Πd)

∂Πd

∂α
≤ 0

= (1− φ)U 0(Πnd)(−Rt) + φU 0(Πd)(−Rt+Rtf) ≤ 0
= (1− φ)U 0(Πnd)(−Rt) + φU 0(Πd)(1− f)(−Rt) ≤ 0
= (1− φ)U 0(Πnd)(−Rt) + φU 0(Πd)(1− f)(−Rt) ≤ 0
= (1− φ)U 0(Πnd) + φU 0(Πd)(1− f) ≤ 0 (38)

(1− φ)

φ(f − 1) ≥
U 0(Πd)
U 0(Πnd)

Equation (33 ). Second order condition:

∂E(U)

∂α
= (1− φ)U 0(Πnd)(−Rt) + φU 0(Πd)(1− f)(−Rt)

∂2E(U)

∂α2
= (1− φ)U 00(Πnd)(−Rt)2 + φU 00(Πd)(1− f)2(−Rt)2 ≤ 0
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Equation (34 ,
∂α

∂t
). Total differentiating (38 )

d = (1− φ)U 0(Πnd)(−Rt) + φU 0(Πd)(1− f)(−Rt)
∂α

∂t
= − dt

dα

dt = (1− φ)U 00(Πnd)(−Rα)(−Rt) + φU 00(Πd)(1− f)(−Rt)(−Rα−R(1− α)f)

dα = D

∂α

∂t
= −(1− φ)U 00(Πnd)(−Rα)(−Rt) + φU 00(Πd)(1− f)(−Rt)(−Rα−R(1− α)f)

D
∂α

∂t
=

R

D

£
φ(1− f)U 00(Πd)(−Rt)(α+ (1− α)f) + (1− φ)U 00(Πnd)α(−Rt)¤

Where D is the second order condition. We know from (38 ) that:

(1− φ) = −φ(1− f)
U 0(Πd)
U 0(Πnd)

Replacing:

∂α

∂t
=

R

D

·
φ(1− f)U 00(Πd)(α+ (1− α)f)(−Rt)− φ(1− f)

U 0(Πd)
U 0(Πnd)

U 00(Πnd)(−Rt)
¸

∂α

∂t
= −R

2t

D
φ(1− f)U 0(Πd)

·
U 00(Πd)
U 0(Πd)

(α+ (1− α)f)− U 0(Πnd)
U 0(Πnd)

¸
∂α

∂t
= −R

2t

D
φ(1− f)U 0(Πnd)

£
RA(Π

nd)(α+ (1− α)f)−RA(Π
d)
¤ ≤ 0

Equation (35 ,
∂α

∂φ
). Total differentiating (38 )

d = (1− φ)U 0(Πnd)(−Rt) + φU 0(Πd)(1− f)(−Rt)
∂α

∂φ
= −dφ

dα

dφ = −U 0(Πnd)(−Rt) + U 0(Πd)(1− f)(−Rt)
dα = D

∂α

∂φ
= −−U

0(Πnd)(−Rt) + U 0(Πd)(1− f)(−Rt)
D

∂α

∂φ
= −Rt

D

£
U 0(Πnd)− U 0(Πd)(1− f)

¤ ≥ 0
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Equation (36 ,
∂α

∂f
). Total differentiating (38 )

d = (1− φ)U 0(Πnd)(−Rt) + φU 0(Πd)(1− f)(−Rt)
∂α

∂f
= −df

dα

df = U 0(Πd)Rt
dα = D

∂α

∂f
= −U

0(Πd)Rt
D

≥ 0
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