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1 Introduction

Like any other, econometric models are useful simpli¯cations of a complex reality.

The simpli¯cation process that leads to a particular speci¯cation usually involves a

trade-o® between accuracy with reality, and parsimony. Hence one particular type of

modeling error consists in proposing a model that it is too parsimonious, in the sense

that the model ignores some relevant aspect of reality, which might negatively a®ect

its use. In the context where the small model is a particular case of a larger model,

in many practical cases restricted models are easier to handle and hopefully more

e±cient than larger, unrestricted models, so in such cases the bene¯ts associated to

being able to impose restrictions have both methodological and practical advantages.

A common practice when there are strong preferences for a restricted model is

to start with a small model and then check whether particular departures from this

null model are supported or rejected by the data. A well known methodological

problem with this approach is that the design of an appropriate test requires some

speci¯c knowledge of both the null model and the departure being examined. In

the context of maximum-likelihood estimation and nested hypotheses, the restricted

model usually implies a certain restriction on a parameter or group of parameters of

a general, unrestricted model of which the null model is a particular case. When the

null model is easier to estimate than the unrestricted model, this type of parametric

restriction can be easily (and in some cases, optimally) tested based on the Rao-Score

(or Lagrange Multiplier) test which is based on the estimation of a restricted model.

An obvious problematic situation arises when the null is false and the alternative

`true' model does not correspond to the one believed by the researcher. In such cases,

it is natural to expect that tests designed to detect particular departures from the

null do not behave correctly under other possible departures. In a more concrete

setup, and without loss of generality, suppose that the econometric model consists in

a probability distribution that can be fully characterized by three parameters °, Ã

and Á. Suppose that the model can be easily estimated under appropriate restrictions

on Ã and Á, like Ã = Ã¤ and Á = Á¤. Let °0; Ã0 and Á0 be the true, unknown values of

the parameters, and suppose that the researcher discards the possibility that Á0 6= Á¤
and proceeds by estimating ° under the restriction that Ã = Ã¤, and then tests the
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null Ã = Ã¤ using a Rao-Score (RS) test. When the alternative model is correctly

speci¯ed, that is, when Á0 = Á¤, a well known result is that the RS test is locally

most powerful to detect departures from the null in the direction implicit in Ã6= Ã¤
(Cox and Hinkley (1974)).

A natural question is what happens to the RS test when the alternative model is

incorrectly speci¯ed, that is, when Á0 6= Á¤? Davidson and MacKinnon (1987) and
Saikkonen (1989) have studied the asymptotic distribution of the RS test under local

misspeci¯cation. They have found that even under the null hypothesis Ã = Ã¤ the

RS test no longer has an asymptotic central chi-square distribution and consequently,

even under the null hypothesis the test tends to spuriously reject it too often. In this

case, even though rejections can still be informative about the falseness of the null

model, RS tests are of a rather limited use when trying to explore the appropriate na-

ture of the misspeci¯cation, since the test rejects when the null hypothesis of interest

is not true but also when the alternative hypothesis is misspeci¯ed.

Based on the results of Saikkonen (1987) and Davidson and MacKinnon (1989),

Bera and Yoon (1993) propose a modi¯ed RS test that though still based on the

restricted maximum likelihood estimator, it is insensitive to local misspeci¯cation,

that is, the proposed test statistic has the central chi-squared distribution under

H0 : Ã = Ã0 independently of whether Á = Á¤ or not, in a local sense. This prin-

ciple has been succesfully implemented in recent research. For example, Bera, Sosa-

Escudero and Yoon (2001) have found that the presence of ¯rst order serial correlation

makes the standard Breusch and Pagan (1980) test for random e®ects reject the null

hypothesis too often, implying that rejections of the null may be due to the presence

of random e®ects but also due to the presence of ¯rst order serial correlation. Based

on the principle mentioned before, they derive a RS modi¯ed test for random e®ects

that is not a®ected by the presence of local serial correlation. In a similar fashion,

Anselin, Bera, Florax and Yoon (1996) derive tests for spatial autocorrelation that are

not sensitive to the presence of local lag dependence. Baltagi and Li (1999) use the

Bera-Yoon principle to obtain tests for functional form misspeci¯cation and spatial

correlation.

A well known restrictive feature of maximum-likelihood based procedures is that

they require full speci¯cation of the underlying probabilistic model, which limits the
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scope of the modi¯ed test by Bera and Yoon (1993) in situations where researchers

cannot guarantee such a detailed knowledge. The ¯nal goal of this paper is to derive

a Bera-Yoon principle that is based on a restricted generalized method of moments

(GMM) estimation framework which does not require full speci¯cation of the proba-

bilistic structure but only some moment conditions. We begin by exploring a standard

testing framework based on restricted GMM estimation with correctly speci¯ed al-

ternatives proposed by Newey and West (1987), which is a GMM equivalent of the

RS principle in the likelihood context. We then derive a result similar to that of

Saikkonen (1989) that shows that the Newey-West test behaves incorrectly under lo-

cal misspeci¯cation. Section 3 presents the main result of the paper: a modi¯ed test

that is insensitive to local misspeci¯cation of the alternative hypothesis. Section 4

presents some concluding remarks and directions for future work.

2 The e®ect of locally misspeci¯ed alternatives

Following Hall (2002, Chapter 3), in the context of GMM estimation a model is a

particular set of assumptions about the data generation process for a (possibly vector

valued) random variable of interest y. For the purposes of our problem, and without

loss of generality, suppose that the underlying statistical model can be parametrized

by a 3 £ 1 vector of parameters µ = (°; Ã; Á)0, µ 2 £ µ <3. We will assume that
there is a vector of m functions g(y; µ) for which the following moment conditions are

satis¯ed:

E g(y; µ) = 0 if and only if µ = µ0 (1)

These are the moment conditions of the problem, and for identi¯cation purposes we

will require m ¸ 3. We will refer to µ0 = (°0; Ã0; Á0)
0 as the `true' values of the

parameters.

There is available an i.i.d. sample y1; y2; : : : ; yn of n observations from the same

data generation process. De¯ne the sample analog of the left-hand side of (1) as

follows:

gn(µ) ´ 1

n

nX
i=1

g(yt; µ)
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and let −n be any m £ m positive de¯nite symmetric matrix. The (unrestricted)

GMM estimator of µ0 is de¯ned as:

µ̂n ´ argmin Qn(µ)

with Qn(µ) ´ gn(µ)
0−¡1n gn(µ). Let − ´ E[g(y; µ0)g(y; µ0)

0]. Then, according to

Hansen's (1982) results, e±ciency requires that we use −n such that −n ! − as

n goes to in¯nity, where `!' denotes convergence in probability. Let rµg(y; µ) be the

m£ 3 Jacobian matrix of g(y; µ). Let G ´ E[rµg(y; µ0)], and de¯ne

Gn(µ) ´ 1

n

nX
i=1

rµg(yt; µ)

and

−n(µ) ´ 1

n

nX
i=1

g(yi; µ)g(yi; µ)
0

It will be useful to use label the gradient of the GMM objetive function as follows:

rµQn(µ) ´ Gn(µ)−¡1n (µ)g(y; µ) (2)

Also, let B ´ G0−¡1G, and Bn(µ) ´ Gn(µ)0−¡1n (µ)Gn(µ)
The analytic framework of this paper is a situation where a researcher is inter-

ested in a null model based on the estimation of the parameter ° after which, for

speci¯cation check or model search purposes, the interest is in testing H0 : Ã = Ã¤
against HA : Ã6= Ã¤. That is, estimation and inference proceeds by ignoring the pos-
sible presence of the parameter Á. Suppose that for some value Á = Á¤ the following

relationship holds:

g1(°; Ã) = g(°; Ã; Á¤)

That is, g1 is a restricted version of the moment conditions. Under some standard

regularity conditions (described in detail in Appendix 1) a restricted GMM estimator

for ° is readily available and it is given by:

~µ = argmin Q1(°; Ã) ,subject to Ã = Ã¤

where, according to the previous assumptions:

5



Q1(Ã; °) = g1(°; Ã)
0−¡1n g1(°; Ã) = g(°; Ã; Á¤)

0−¡1n g(°; Ã; Á¤):

A standard procedure to test the null hypothesis H0 : Ã = Ã¤ can be based on the

gradient test proposed by Newey and West (1987), which is the GMM equivalent of

the Rao-Score test in the context of maximum-likelihood estimation:

LMÃ(~µ) = n rÃQ1(~µ)
0 B¡1Ã¢° rÃQ1(~µ)

where BÃ¢° ´ BÃÃ ¡ BÃ°B¡1°° B°Ã. According to the results in Newey and West

(1987) when the model is correctly speci¯ed, that is, when Á¤ = Á0, when Ã =

Ã¤ + ´=
p
n, LMÃ(~µ) has an asymptotic non-central chi-square distribution Â

2(¸´)

with non-centrality parameter ¸´ = ´
0BÃ¢°´. In particular, when the null hypothesis

is true (´ = 0) the test has asymptotic central chi-square distribution and, hence,

when the adopted simpli¯cation on the nuisance parameter is correct, the test has

power only in the alternative it was designed to detect.

A natural question is what happens with LMÃ(~µ) when Á¤ 6= Á0, that is, when it is
based on a false restriction on a parameter that is not of direct interest to the testing

procedure. A general answer to this question would require to explore the nature of

the misspeci¯cation in detail, but a particular and commonly proposed situation can

be analyzed. Consider the case where the model is locally misspeci¯ed in the sense

that Á0 = Á¤ + ±=
p
n. In this setup, we are interested in exploring what happens

to LMÃ(~µ) when we proceed under the assumption Á = Á¤ and hence the assumed

alternative di®ers from the true one in a local sense. Let `»' denote convergence in
distribution. The following Proposition shows that in general the LMÃ(~µ) becomes

contaminated by the presence of this local misspeci¯cation:

Proposition 1 Under H0 : Ã = Ã0 and when Á0 = Á¤ + ±=
p
n, LMÃ(~µ) » Â2r(¸(±)),

with ¸(±) ´ ±0BÃÁ¢°B¡1Ã¢°BÃÁ¢°±.
Proof: See Appendix 2.

The Lemma says that under local misspeci¯cation of the nuisance parameter, even

when the null hypothesis of interest is correct, the test for H0 : Ã = Ã0 will not have
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a central chi-square distribution as it would have when the alternative is correctly

speci¯ed. Then, even when the null is correct, the testing procedure will tend to reject

it due to the locally misspeci¯ed parameter Á. Consequently, under this particular

type of misspeci¯cation, if such test is used in practice, rejections are not informative

about the nature of the departure from the null model since both, the fact that the

null hypothesis H0 : Ã = Ã¤ is not true, and/or the presence of local misspeci¯tation

(Á0 = Á¤+ ±=
p
n) would induce the test to reject the null. This result can be seen as

an extension of that of Davidson and MacKinnon (1986) and Saikkonnen (1989) for

the GMM framework.

3 Testing with locally misspeci¯ed alternatives

The search for a valid testing procedure that does not depend on the concurrent

estimation of the nuisance parameter Á will be based on the fact that an alternative

procedure that would allow us to test H0 : Ã = Ã¤, and which does not depend

on imposing restrictions on Á, can be based on the partially restricted estimator
¹µ = (¹°; Ã¤; ¹Á), which solves:

¹µ = argmin Qn(µ) subject to Ã = Ã¤

Let ¯ ´ (°; Á)0 so µ is now partitioned as µ = (Ã; ¯0)0. Again based on the results
of Newey and West (1987), under H0 : Ã = Ã¤ the gradient test

LMÃ(¹µ) = nrÃQn(¹µ)
0 B¡1Ã¢¯ rÃQn(¹µ)

has a limiting central chi-square distribution with r degrees of freedom, where BÃ¢¯ ´
BÃÃ ¡ BÃ¯B¡1¯¯B¯Ã. This second procedure is based on the estimation of ° and Á,
but the purpose of this paper is to derive a valid test for H0 : Ã = Ã¤ that does not

require the concurrent estimation of the nuisance parameter Á but it can be based on

the `fully restricted' estimator ~µ. By `valid' we mean a testing prodecure for the null

hypothesis H0 : Ã = Ã¤ against HA : Ã 6= Ã¤ whose asymptotic distribution is not

a®ected by whether Á0 = Á¤ or Á0 6= Á¤, at least in a local sense, so that rejections
indicate departures from H0 : Ã = Ã¤ exclusively.
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According to the results in Newey and McFadden (1994), LMÃ(¹µ) is asympotically

equivalent to a test where the partially restricted GMM estimator ¹µ is replaced by an

optimal one-step estimator derived from an initial
p
n-consistent estimator. Call µ̂ the

optimal one-step estimator. Then, an asymptotically equivalent version of LMÃ(¹µ)

is:

LMÃ(µ̂) = rÃQn(µ̂)
0 B¡1Ã¢°Á rÃQn(µ̂) » Â2r(0) (3)

In order to derive the one-step estimator we will follow the arguments in the deriva-

tion of Bera and Yoon's (1993) procedure within the context of maximum-likelihood

estimation. Under the null hypothesis H0 : Ã = Ã¤ and when Á0 = Á¤ + ±=
p
n, a

trivial initial
p
n-consistent estimator that can be proposed under the assumptions

of this paper is µI = (~°; Ã0; Á¤)0, where ~° is the GMM estimator of ° from the fully

restricted estimation problem. From Á0 = Á¤ + ±=
p
n we immediately see that Á¤ is

also a
p
n-consistent estimator.

When the null hypothesis H0 : Ã = Ã¤ is true, consider a GMM model for the

estimation of ° and Á under the restriction implied by the null hypothesis. Following

Newey and McFadden (1994) the optimal one-step estimator is given by:"
°̂

Á̂

#
=

"
~°
Á¤

#
+

"
B°°(µ) B°Á(µ)
BÁ°(µ) BÁÁ(µ)

#¡1
µ=~µ

" r°Qn(µ)
rÁQn(µ)

#
µ=~µ

From the ¯rst order conditions used to derive ~°, r°Qn(~µ) = 0, we obtain:

(Á̂¡ Á¤) = B¡1Á¢°(~µ)rÁQn(~µ) (4)

where BÁ¢°(µ) = BÁÁ ¡BÁ°B¡1°° BÁ°.
Following the stragegy of the proof of Proposition 1, we take a Taylor expansion

of gn(~µ) around ¹µ and then replace in the gradient rÁQn(~µ) to get:

rÃQn(µ̂) = rÃQn(¹µ) +BÃÁ(Á̂¡ Á¤) + op (5)

Now replacing the right hand side of (4) in (5) we get:

rÃQn(µ̂) = rÃQn(¹µ)¡BÃÁB¡1Á¢°rÁQn(¹µ) + op ´ r̂ÃQn(¹µ) + op
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Then, replacing in (3), and eliminating asymptotically irrelevant terms we obtain the

asymptotically equivalent version of (3) which is:

LM¤
Ã(
~µ) = r̂ÃQn(¹µ)

0 B¡1Ã¢°Á r̂ÃQn(¹µ)

To get the ¯nal result, note that BÃ¢°Á can be seen as the sum of squared errors of

projecting rÃQn on r°Qn and rÁQn. By standard linear projection algebra, this

should be exactly the same as the sum of squared residuals of regressing rÃQn on

rÁqn after eliminating the linear e®ect of r°Qn, that is, BÃÁ¢° , then, replacing we

get:

LM¤
Ã(
~µ) = r̂ÃQn(¹µ)

0 B¡1ÃÁ¢° r̂ÃQn(¹µ)

which has a central chi-square distribution under H0 : Ã = Ã¤ and when Á0 =

Á¤ + ±=
p
n. We summarize the main result of this section in the next Proposition.

Proposition 2 De¯ne a test statistic LM¤
Ã(
~µ) = r̂ÃQn(¹µ)

0 B¡1ÃÁ¢° r̂ÃQn(¹µ), where

r̂ÃQn(¹µ) ´ rÃQn(¹µ) ¡ BÃÁB¡1Á¢°rÁQn(¹µ). Then, under H0 : Ã = Ã¤ and when

Ã0 = Ã¤ + ±=
p
n, LM¤

Ã(
~µ) » Â2(0).

This result proposes a GMM based statistic that, unlike the Newey-West test, has

asymptotic central Â2 distribution under the null and when the alternative is possibly

locally misspeci¯ed. The derived procedure is still based on the fully restricted null

(small) model, which is makes it computationally convenient since all the elements to

construct it are usually available after GMM estimation. The obtained result extends

the likelihood-based Bera-Yoon (1993) principle to the GMM family, and hence it

replaces the distributional requirements of the likelihood framework by moment con-

ditions. Of course, the Newey-West test is a special case of it, and it corresponds to

the case where ± = 0, that is, to the case where the alternative is correctly speci¯ed.

4 Concluding remarks and future work

This paper studies the behavior of standard GMM based speci¯cation tests after

estimating null models. In particular, the paper shows that when the alternative
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model is locally misspeci¯ed, the usual Newey-West test does not have a central Â2

distribution under the null hypothesis, which leads to spurious rejections of the null.

This limits the use of such test since rejections are not informative about the source

of the misspeci¯cation. The paper derives explicitely the distribution of the Newey-

West test under the misspeci¯ed alternative for the case of local misspeci¯cation, and

based on this result it proposes a Bera-Yoon type of modi¯ed test that is insensitive

to local misspeci¯cation. A convenient computational feature is that the proposed

modi¯ed test can still be computed based on the restricted GMM estimator. The

results of this paper can be seen as extending those of Saikkonen (1989), Davidson and

MacKinnon (1987) and Bera and Yoon (1993) to the more general GMM framework

that, unlike the original maximum-likelihood setup, does not require full speci¯cation

of the probability model.

A potential source of applications of the proposed modi¯ed procedure is the modi-

¯ed tests recently proposed based on the Bera-Yoon principle in the likelihood frame-

work, which includes recent work by Bera et. al. (2001), Anselin et al. (1996) and

Baltagi and Li (1999). All these results are based on strict distributional assumptions,

so it would be important to derive GMM based equivalent of those tests that do not

require full speci¯cation of the underlying likelihood. Another source of applicability

is to produce resistant versions of recent GMM based test. For example, Saavedra

(2002) derives GMM versions of spatial lag and autocorrelation tests, and it would

be interesting to derive a spatial lag test that is insensitive to serial correlation.

Another important route to explore is the evaluation of the small sample perfor-

mance of the proposed test statistics through the design of Monte Carlo experiments.

In particular, it would be important to explore the severity of local misspeci¯cation

on the size of standard Newey-West tests. Also, it would be relevant to explore how

restrictive is the local nature of the proposed solution, though the results in Bera et.al.

(2001) look promising, in the sense that their local procedure is shown to provide a

useful correction even in non-local frameworks.
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Appendix 1: Regularity conditions

The following regularity conditions will be assummed. They correspond to the regu-

larity conditions in Theorems 2.6 (consistency of GMM estimator), 3.4 (asymptotic

normality of the GMM estimator) and 4.5 (variance estimation) in Newey and Mc-

Fadden (1994).

1. −n is a sequence of positive semi-de¯nite matrices that converge to a positive

de¯nite symmetric matrix −, with −E[g(y; µ0) = 0 if and only if µ = µ0.

2. µ0 2 £, which is a compact set.

3. g(y; µ) is continuous at each µ 2 £ with probability one.

4. E [supµ2£ k g(y; µ) k] <1

5. gn(µ) is continuously di®erentiable in a neighborhood N of µ0

6.
p
ngn(µ0)

D! N(0;−), where
D! denotes convergence in distribution.

7. There is G(µ) that is continuous at µ0 and supµ2N k rµgn(µ) ¡ G(µ) k p! 0,

where `
p!' denotes convergence in probability.

8. For G = G(µ0), B = G
0−¡1G is non-singular.

Conditions (1)-(4) guarantee the consistency of the unrestricted GMM estima-

tor (µ̂
p! µ0). Conditions (1) to (8) imply asymptotic normality. See Newey and

McFadden (1994) for proofs.
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Appendix 2: Proof of Proposition 1

The logic of the proof follows closely Saikkonen (1989), who bases the proof in stan-

dard Taylor expansions. In the case of GMM the strategy, as in Newey and McFadden

(1994), is to expand only the part of the gradient of the objetive function that corre-

sponds to the moment conditions.

Consider the following version of the gradient of the GMM criterion function:

rµQn(µ) = G
0−¡1gn(µ) (6)

that is, (6) is simply (2) where Gn and −n have been replaced by their population

limits. The elements of the matrix B will be denoted by BÃÃ; BÃ°, etc. We will use

BÃ to denote the row of B corresponding to Ã. For example, BÃ = (BÃ°; BÃÃ; BÃÁ)
0.

B° and BÁ are de¯ned alike.

Take a ¯rst order Taylor expansion of gn(~µ) about gn(µ0) and replace in (6) to get:

rÃQn(~µ) = rÃQn(µ0) +BÃ(~µ ¡ µ0) + op
= rÃQn(µ0) +BÃ°(~° ¡ °0)¡BÃÁ(µ1) ±=

p
n+ op (7)

Let µ¤ ´ (°0; Ã¤; Á¤)0, and now consider a Taylor expansion of gn(µ¤) about gn(µ0)
to get:

r°Qn(µ¤) = r°Qn(µ0) +B°(µ¤ ¡ µ0) + op
= r°Qn(µ0)¡B°Á ±=

p
n+ op (8)

Finally, a third Taylor expansion of gn(µ¤) about gn(~µ) leads to:

r°Qn(µ¤) = r°Qn(~µ) +B°(µ¤ ¡ ~µ) + op
= ¡B°°(~° ¡ °0) + op (9)

From (9) we obtain:

~° ¡ °0 = ¡B¡1°°r°Qn(µ¤) + op

Replacing in (7) we get:

13



rÃQ(~µ) = rÃQ(µ0)¡BÃ°B¡1°°r°Qn(µ¤)¡BÃÁ ±=
p
n+ op

Now replace r°Qn(µ¤) by the expression in (8):

rÃQn(~µ) = rÃQn(µ0)¡BÃ°B¡1°°
h
r°Qn(µ0)¡B°Á ±=

p
n
i
¡BÃÁ ±=

p
n+ op

= rÃQn(µ0)¡BÃ°B¡1°°r°Qn(µ0) +

+BÃ°B
¡1
°° B°Á ±=

p
n¡BÃÁ ±=

p
n+ op

= rÃQn(µ0)¡BÃ°B¡1°°r°Qn(µ0)¡
¡
h
BÃÁ ¡BÃ°B¡1°° B°Á

i
±=
p
n+ op

= rÃQn(µ0)¡BÃ°B¡1°°r°Qn(µ0)¡BÃÁ¢°±=
p
n+ op (10)

Now by the assumed regularity of GMM

rµQn(µ0) » N(0; B)
Then the asymptotic distribution of (10) is:

rÃQ(~µ) » N(¡BÃÁ¢°±=
p
n; V )

with:

V = E
h
rÃQn(µ0)¡BÃ°B¡1°°r°Qn(µ0)

i h
rÃQn(µ0)¡BÃ°B¡1°°r°Qn(µ0)

i0
= E

h
rÃQn(µ0)¡BÃ°B¡1°°r°Qn(µ0)

i h
rÃQn(µ0)

0 ¡r°Qn(µ0)
0B¡1°° BÃ°

i
= BÃÃ ¡BÃ°B¡1°° BÃ° ¡BÃ°B¡1°° B°Ã ¡BÃ°B¡1°° B°°B¡1°° B°Ã
= BÃÃ ¡BÃ°B¡1°° BÃ° ´ BÃ¢°

Then,

rÃQn(~µ) » N(¡BÃÁ¢°±=
p
n;BÃ¢°)

and consequently,

LMÃ(~µ) = rÃQn(~µ)
0 B¡1Ã¢° rÃQn(~µ) » Â2(¸(±))

with ¸(±) ´ ±0BÃÁ¢°B¡1Ã¢°BÃÁ¢°±, which completes the proof.
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