ECONOMIC NONEQUILIBRIUM, INSTABILITY AND CHAOS

VICTOR A. BEKER™

Introduction
In a former article1, we have argued in faver of a broader use of nonlinear dynamical analysis
in economic theory as a way of studying the processes of change in the economy.

We have stressed that this approach allows us to think change in a different way to the
one prevalent in economic theory, where evolution is seen just as a smooth, gentle, continuous
Process.

On the contrary, nonlinearity paves the way o lhe analysis of economic discontinuily,
i.e., abrupt, sharp changes in economic variables, like the October 1987 stock markel crash,
the curmrency crises thal shattered the Bretton Woods system in the eardy "70s or hyperinflation
processes.

We posil that this sor of phenomena are better analyzed within the framework
provided by nonlinear dynamics.

In this paper, we illustrale by means of an oversimplistic example some implicalions of
the adoption of that approach and we further analyze its consequences from a methodological
point of view.

Dynamic instability in market analysis

As it is well known, under the assumplion of linearity in the demand and supply
functions, Walrasian dynamic stability depends on the slopes of the demand and supply curves
as well as on the adjustment coefficient of prices wilh resped! 1o excess demand.

Instability, in the linear case, implies an explosive lime palh, As in reality explosive
time paths seem lo be a somewhal rare and very particular case, if at all, it is usual 1o assume
well-behaved demand and supply curves, ie., curves that warrant stability of equilibrium
prices.

Although linearity is recognized to be loo restrictive an assumplion, the wide use of the

linear approach is justified from the point of view of ocal stability analysis,
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However, local stability is a namow concepl for ecomomic applications. I restricts
siability analysis to fluctuations that keep the sysiem close to its equilibrium values.

Although the linear assumplion i an acceptable approach for close-lo-equilibrium
analysis, this is not the case when the aim 5 giobal stabilily analysis, which is far more
important from the point of view of applied economics.

As 5000 as we leave close-lo-equilibrivm analysis, linearity, in most cases, is no longer
a reasonable assumption. For instance, in a linear unstable system a small perurbation will
increase indefinitely, Thal is why, in business cycle theory, “ceilings” and “floors™ were
introduced (Hicks, 1950) as a way to put a limit to Muciuations, However, this in itself implies to
resort to a nonlinear elernent (Blatt, 1383, p. 162),

As a general case, far-from-equilibrium analysis implies the use of nonlinear modeis.
Market stability analysis with nonlinear functions

We will illustrate the complexities that arse as soon as we abandon the linearity
assumplions analizing a casa of market stability. For that purpose we will employ a logistic
equation model (Pelers, 1991).

Although this model s extremely simplistic # is useful to illustrale the son of
complexities that arise in even a simple nonlinear system. We can begin lo imagine the
complex results that can ariginale in more realistic and thus larger nonlinear systems.

Let us suppose that the demand Is represented by a logistic equation of the form:

Dy= a Py{c-Py)
where Oy is the quantity demanded in period | and Py is price in the same pericd. For the sake
of convenience lel us assurne in what follows that c=1, i.e_, Py takes values in the interval [0,1],
Anyway, the qualitative results hald for any other value we want to give to c.

What does this demand function mean? As illustrated in Figure 1, as price begins
increasing the quantily demanded increases too until reaches a maximum when P=0.50,
Further increases in price are accompanied by a quanlily decline as in well-behaved demand

Curvese,

2is interesting to remark that cne of the pre-Marshallian economisis dealing with the laws of
demand and supply, Hans von Mangolkdt (1824-1868), cited the case of demand curves fhat
nse with price because of expectations of even higher future prices, Confradicting his
coemporary Dupuil -who argued that demand curves must be of convex shape- Mangoidt
also held that negative sloping demand cuves could be either convex or concave depending on
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us, ................................

Fig. 1

An upward-sloping segment of the demand curve is a familiar feature in assef markets.
As assets are demanded as value bearers, the more the price is expecied lo increase in the
future the higher will be its demand loday. So, when prices begin moving up, it is interpreted as
an announcement of further increases and this stimulates the quantities demanded?,

In a context of rational expectations, markel prices are supposed to reflect all the
available informalion. Therefore, they may be considered by the less-informed agenis as
revealing the information possessed by informed traders, Posilive feedback trading -buying
after price increases- may be, from this point of view, quite a rational behavior.

Fositive feedback trading may also result from lechnical analysis models designed to
calch incipient trends®, from the use of stop loss orders, from portfolio insurance, from &
positive wealth elasticity of demand for risky assels, or from margin call-induced sefling after
petiods of low returns (Cutler et al, 1990).

Posilive feedback trading may also be the result of herd behavior, i.e., investors driven

by group psychaology, simple mimicking the investment decisions of other investors.

the type of goods (luxuries or necessities).on the degree of inequality of income distribution,
and on the availability of close substitutes (Humphrey, 1992).

3 Thisis a particular case of the more general one where price is taken as a sign of quality. See
Scitovsky (1944-45) and Kreps (1992).1 want to thank my son Pablo, who draw my attention on
this point

% With reference to the Ociober 1987 crash Martin Feldstein states: “Institutional portiolio
managers were blamed for program trading stralegies that involved seiling stock as equity
prices fell” (M.Feldstein, 1991, p. 8). In the same volume, Lawrence H. Summaers mentions The
Economist as saying that "aimaost four-fifths of foreign exchange trading is driven by techmical
syslems thal give rise to positive feedback® (Ibid, p. 141).
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Let us postulate a linear supply function
St=BPy

The excess demand function is then:
By =Dy-Sy =aPy(1-P)-BP

Let us assume a Walrasian mechanism for price adjustment:
Pui-Pi=kE

As B is just a converier from prices to physical quantities, we may assume

1
kw =
B

Thus
Prei-P= 5 1aP(1-P-BPJ (1
Pisey-Py= % PL(1-P)-P (@

Calling

-
1]
=|g

il becomes
Pu1=1P(1-P) @)
which is, again, a logisiic equation,
Our interest is to know the asymplolic behavior of this difference equation,
Faor that purpose, let us take any initial value for Py and any value for y included in the
intlerval 1<p<3. If we iterate equation (3) we will realize thal prices always converge to a single
value, whichever be the initial price. For instance, Figure 2 depicts the case for Py = 0.30 and y

= 2.



1] 2] 50 5 ion
Iteratios nusbar

Fig. 2

This behavior suddenly changes when =3, Al this crifical level there appears a
bifurcation, The system oscillates between two values, The same happens again when =3,45;
hen, four possible solutions appear.

The route to chaos

Broadly speaking, if F.I.(x}ryxu-x}, F‘r has an atiracting fixed point at Pfu
T

provided® 14<3. As y passes through 3, a bifurcation lakes place: a new periodic point® of
pericd 2 appears. As y continues 1o increase the dynamics of FT becomes increasingly more
complicated: it undergoes a series of period-doubling bifurcations (see Fig, 3). Finally, Fy

becomes chaotic,

3ty 1, peo,

& The point x is a periodic point of pericd n if M{x)=x, where M{x)=f o-.. =f {x), that Is the n-
A ot i
n Tises
fold composition with itsalf.
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(The integers represent the periods)
Fig. 3

In fact, 8 necessary and sufficient condition for the fixed point to be stable is that the

dF,

0

absolule value of the derivative of F.rat g =P‘r‘ be less than 1; i.e., < 1. As lhe value of

yincreases the hump of F., becomes higher and Py, moves down into regions where the slope is
greater. Thus the fixed point becomes unstabie’,

What does chaos mean?

Let V be a sel, £V = Vis said lo be chaotic on V if:
a) f has sensitive dependence on initial conditions;
b fis topelogically transitive®,

This means thal a chaolic map possesses bwo basic ingredients; unpredictability and
indecomposability

A map possesses sensifive dependence on iniial conditions if there exisl points
arbitrarly close 1o a point x which eventually separate from x by at least a certain  &>0 under
iteration of . This makes a chaotic map unpredictable,

Maore formally, f-J— J has sensitive dependence on initial conditions if there exists &=0
such that, for any x & J and any neighborhood N of x, there exists y @ N and n = 0 such

that [£7{x) - r“fy}| = 5.

i F .
7 It can be easily proven that % < 1implies y<3.

8 Some authors include a third condition: periodic points are dense in V. (See Devaney, 1989,
p. 50).
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A chaolic map cannot be broken down inlo bwo subsysiems which do nol inleract under
f. In fact, a fopologically fransitive map has points which evenlually move under iteralicn from
one arbitrarily small neighborhood to any other. Then, the dynamical sysiem cannol be

decomposed inlo hwo disjoinl open sets which are invariant under the map.,

T T LI |
L% 1o 1A% 354 156 175 ]

Fig. 4

More formally, f:J—J is lopologically transitive if for any pair of open sels UWCJ
there exists k=0 such that (KU)W =0,
Indecomposability means, in essenca, that any subsel, whatever ils size, gives way 1o

different trajectories diverging under iteration. The opposite happens in the case of stable
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syslems where neighboring points are transformed into neighboring poeints -or into one single
point.

Tuming back 1o our inilial example, we have in Figure 4 the orbit diagram of FTwm'r
2.3< y 4. It plots potential values of x versus the assoclated values of y.

A5 it can be observed, there appear succesive bifurcations until for each value of ywe
have infinite solufions in the chaolic region. Allhough generated by a delerministic equation the
senies looks random.

Interpreting the genesis of chaos.

Whose is_lhu responsibility for this change of behavior?

As we have seen, instability appears in the inlerval 35 ¢ <4, This means that unstable
equilibrium occurs on the negative sloping branch of the demand curve of Figure 1 (Ihat is, for

Py=0.5) (see Figure 5).

Fig.5. The graphs of Fy, (Py=y Py(1-Py) for =3 and y=4 from left to right. In both cases P}
=0.5.

In ether words, a sufficient condition for equilibrium stability is for it to take place on the
positive sioping branch of the demand curve.

On the other hand, a necessary condition for instability Is thal equilibrium takes place
on the negative sloping branch of the demand curve. However, il is nol a sufficient condition as
it may be immediately verified for 2<p3.

A sufficient condition for instability Is y2 3. The equivalence between his condition and

{he one in the case of a linear demand curve is demonstrated in the Appendix.
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The aforementioned condition means that instabifity, in our model, is proper of a bull

market.

Lel us recall thal y= %. So, the increases in the value of y are explained by an

increase in the value of « or a decrement in the value of J, or both,
a comeas from the demand function:
Oy= aPy(1-Py= a(Py -Ff)

The term between brackets may be interpreled as a sort of "comecled” price. Then, a
may be considered the adjustment coefficient of demand to changes in the "corrected” price.
An increase in ¢ moves (he demand curve Lo the right in Figure 1.

P measures the slope of the supply curve and its inverse is the coefficient of reaction of
price o excess demand.

S0, as [ decreases, the supply curve moves to the left, augmenting the excess
demand al a given price, and, at the same time, il increases the price reaclion to a given
excess demand.

That is why we have said thal instability is a charactenstic of a bull market: it depends
positively on increases in demand and in the coefficiend of reaction of price as well as on
decrements of supply. When, due o the combination of these elemenls, y reaches the value of
3, instability appears on the stage.

Instability increases as y lends 1o 4, which s the maximum value il can reach in our
exercise. In that case the critical point for Py,q equals 1, which by hypothesis, is the maximum
value the price may lake.

Where does instability come from?

When y passes through 3 there appears an aiiracling periodic point of perod 2. The
sysiem Is alfracled lo it and enlers a loop oscillating between two prices withoul converging to

the equilibrium point? (see Figure 8).

? Siriclly speaking, the sel of all points which under iteration are periodically visited by the
system, always in the same order, form a perodic orbit or limil cycle (see Medio, 1992,p. 45).
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Fig. 6

As yincreases new attracting periodic points are bom of period 4, 8, ele. F‘.r undergoes
a series of period-doublings as yincreases until it becomes chaotic.

Thus, while the linear approach allows, in general, only two alternatives: either stability
or an explosive path, nonlinearity allows for a continuum of altematives from stable equilibrium
up to chaos, depending on the value of the paramelers.

The measurement of chaos

It is still an unsetiled question whether strange attractors™® are really the key to chaos
or nol''. Some authors argue that chaotic dynamics depend on the existence of a strange
altractor, However, Eckmann and Ruelle {1985) have argued that # is sensilive dependenca
on initial conditions which is the true meaning of chaos, on the ground thal the dynamical
aspect is a more importand aspect than the geomelrical one,

Anyway, inasmuch as sensible dependence on initial conditions is the essential feature
of chaolic dynamics the measure of chaos is provided by lhe Lyapunov exponent, more
precisely by the largest Lyapunov exponent.

Lyapunov exponents measure how quickly nearby orbits diverge in phase space. Thus,

they measure the susceptibility of a system 1o sensitive dependence on initial conditions.

¥ strange altractors are a kind of altractors which, unlike point  attractors or imil cycles, are
nonperiodic bul whose points and orbils stay within the same region of phase space. For a nice
analysis of strange attractors see Medio (1592).

" One of the reasons for this is that there is no agreement on what a sirange aftractor is. Thera
is no consensus at all on the use of the terms “strange™ and "attractoe®, See, for instance,
Devaney (1989, p. 211) and Medio (1992, pp. 48 and 158).
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There is one Lyapunov exponent for each dimension In phase space. A posifive
Lyapunov exponent’? measures how rapidly nearby peints diverge from one another, On the
conlrary, a negalive Lyapunov exponent measures how long it takes for a system to reestablish
itself afler a perturbation,

Deterministic chaos requires the largest Lyapunov exponent to be positive.

Let us suppose two initial conditions, x5 and x'y. as near one from the other as we
want, and follow the trajectories {Fk{x,;]} and Fk{:'n;-. startling from x; and x'0, Sensitive
dependence on initial conditions means thal nearby Irsjectories must diverge. 'I-"ne largest
Lyapunov exponent measures the rate of local divergence and averages the rate over a typical
long trajectory generated by the map F.

Suppose we make a small eror in measuring the initial state and want to forecast the
slate one period from now, The largest Lyapunov exponent is a measure of how fast the initial
measurament error multiplies into error in ane’s forecast.

For example, let us suppose the largest Lyapunov exponent was 0,05, This means we
lose 0,05 bit of predictive power wilh each iteration. Therefore, if we could measure cumment
condilions o 2 bits of accuracy, we would lose all prediclive power after 40 ileralions.

Inasmuch our measurements have a finile accuracy, emors of measurement are
unavoidable, We can increase precision, adding more decimals lo our measurement, thus
reducing the value of the largest Lyapunov exponent and, then, the rhythm at which nearby
lrajectories diverge. Bul this only postpones the moment of lhe divergence. R would only
disappear if we could get an infinile degree of precision, which means infinile infermation. That
would be Ihe cost for exact prediction in a system subject lo chaalic behaviar,

Limits to forecasting
Sensilive dependence on initial conditions means thal the further out in time we go, the

less accurate our ferecast become. We do know the equations of motion, but the accuracy of

12 The Lyapunov exponent (L) is defined by:

L = fm [m ey vy 1 t]
where Fl{x) denoles the tin iterate of F starling at initial condition x, ie., xpeq= Flix), = is
derivalive. | | is a norm, v is a direction vector and *.* denotes a scalar product.
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the predictions depends on the quality of the inputs, Monlinearty amplifies initial lack of
precision until we become unable of predicling where a cerain trajectory will be,

The inverse of Lyapunov exponent is called the Lyapunov time (1 = %} and it

measures aler how many iterations the knowledge of inilial conditions of the system s lost and
its trajeclory cannol be knawn,

In this respect, chaos implies the existence of a femporal horizon -defined by the
Lyapunov time- after which our forecasts lose refiability at all,

Impredictibility is an intrinsic characteristic of chaoclic systems. It cannot be eliminated
by any finile increase in the accuracy of information. We can extend the Lyapunov time, i.e.,
the time during which a frajectory may be forecasied, increasing the precision of the
measurement of initial conditions, bul sooner or later we will be faced with diminishing marginal
relurms.

Randomness and determinism

Cne interesting question raised by this analysis s whether there exist truly random
events. The question has early been raised in the survey adicle by Baumol and Benhabib
{1989).

If a series generated by quite a deterministic equation looks perfecily random, is there
anything like a truly stochastic process at all? If, “from the point of view of practice, there is no
difference between high-dimensional deterministic chaos and randomness,”13 which is the
space left for the concept of a purely random mﬁﬂ?l'li

For the time being, what can effectively be said is thal there does not exist the sort of
sharp oppasilicn it was used to be thought 1o exist between determinism and randomness.

On the confrary, we are tempted to think of the existence of a continuum, wherae
randomness appears as the extreme case of determinism or, if we prefer, delerministic chaos

may be thought of as the tridge between simple determinism and pure stochasticity,

13 Brock, Hsieh, and LeBaron (1993, p. 14),

14 4 significant effort is baing devoted fo devise methodological procedures which may allow 1o
distinguish a random series from one generated by delerminisfic chaos. The so called BDS
statistic -named afler s authors: Brock, Dechert, and Scheinkman- is an example of the
advance in this direction. See Brock af al, ibd.
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Up to now, Mathematics was the realm of determinism and Slalistics, the kingdom of
randomness, Mow, we are inclined to think that nonlinear analysis and, particulady, chaotic
dynamics represenl an inlermediate zone between cne and the olher field of knowledge.
Perhaps, further research may show there are more things in common between them than what
we presently think of.

Perhaps, in a fulure we may be forced fo conclude that the relationship between
determinism and randomness is cne that resembles that existing in quantum theory between
particles and waves.

As we have said, it has already baen estabiished thatl although we may improve the
accuracy of the measurement of initial conditions, chaolic dynamics lead us, sooner or later, to
face a temporal barrier beyond which no exact prediction is possible. Further on the Lyapunov
time probabilities replace determinism. We can only predicl, with a certain level of probability,
that a certain frajectory will fall within a certain region but we are unable lo forecast it with
certainty as if d were a truly random trajectory. Beyond the temporal horzon, Slatistics replaces
Mathemaltics.

Conclusions

By means of a very simple model of demand and supply we have shown the
consequences of the introduction of the assumption of a nonlinear behavior,

Basically, we are faced wilth a more general model than the linear ane, inasmuch as it
allows for different solutions which range from equilibrium wp to chaos, depending on the
values laken by the control parameters.

The main characteristic of nonlinearity Is precisely that the same model may lead 1o
qualitatively different results in response o qualitative parametric changes. In Hegelian terms,
quantitative change becomes qualitative change.

In less philosophical lerms, Peters (1991) illustrates the point as the siraw thal breaks
the camels back. In fact, as we add weight to the burden a camel is to camy, a point is reached
where the animal cannot handle any more weight. A straw placed on the camel’s back will
cause the camel 1o collapse. The weighl reaches a critical level al which the animal collapses.

In other words, the message is: in Economics quantily malfers,
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Postulating nontinearily implies the belief thal the portion of realily under analysis Is
better modeled by assuming a non-uniform response to changes in the independent(s)
variable(s).

Linearity is a sort of pre-Columbian way of reasoning: it lelis us thal if we point to the
West we can never reach the East. The size and direction of the response lo equal changes in
the excgenous varable(s) are always the sama.

Of course, this sounds quile plausible for local analysis but it is a very particular and
unusual case when the analysis is refermed to big changes, The latter is the kingdom of
nonlinearity,

Although we have restricted our analysis o just an exercise using the logistic equation,
mast of the resulls are valid for a wider field of applications.,

Firsl, ane should recall that mappings that are topologically conjugate are complately
equivalent in lerms of their dynamics.

This means that, in particular, provided a function is single-peaked, has a negative
Schwartzian derivative and is increasing in y, then our results will go through,

The second reason is the following. Although a detailed mathematical theory has been
developed so far only for one-dimensional dynamical systems, higher-dimension systems have
been studied in particular cases or by means of computer simulations. These syslems display
the kinds of behavior discussed in this paper as well as other forms of complex behavior,

There is another argument in favor of nonlinear dynamic analysis.

If a wvisitor of Mars arrives at the Earth and in order to understand the world economy
begins studyirg economic theory she would expect lo find economic series randomly
fluctuating around equilibrium or converging to steady states. She will be astonished when,
analyzing the behavior of empirical variables, she will realize that “there is litile if any evidenca
that economic date converge to stationary states, to steady growth or o periodic cycles, ™ This
“corollary fact of monumental importance for the construction of economic science™® a5 Day
calls it, emphasizes the imporiance of nonfinear models as @ tool for studying economic

change

BRH Day (1993, p. 3).
®1hid {Ihe emphasis is ours).
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Change is incompatible with equilibrium. If a system is in equilibrium it has no history; it
is always in that siate, but for randomly distributed shocks,

On tha contrary, evolution is associaled with structural insfahilify.

Structural instability refers to perturbations in the function space, A dynamical system is
said to be structurally stable if it is dynamically equivalent to a system sufficiently close to i in
SOME SEense.

On the contrary, a sysiem s struclurally unstable il a small perlurbation is capable of
yiekding a qualitatively new dynamical behavior.

In particular, the qualitative change thal maps undergo as paramelers change is called
bifurcation.

Thus, bifurcation theory studies structurally unsiable dynamical systems. For instance,
one of the major ways a map can be structurally unstable occurs when there Is a lack of
hyperbalicity'™. Bifurcations occur, precisely, near non-hyperbolic fixed and periodic points,

Here it comes the relationship with the concept of evolution, Evolution is what we eail
the transit -from one mode of functioning to another- a dynamical system undergoes at a
bifurcation point due to a parametric change.

Maonlinearity sheds a new light on the boundaries of comparalive static analysis which,
already pointed owlt by Samuelson's principle of corespondence, are nol always well
remembered by the members of the profession,

Stalic comparative analyses are legitimate provided equilibrium ks stable and only
within the limits of validity of that stability.

If equilibriurn is locally stable, local will also be the scope of comparalive statics
analysis.

Nenlinearily implies 1hat a change in a parameler value can lead the system 1o a new
equilibriurm point -in which case comparalive static analysis holds- but it may also reach a point
of bifurcation, a limil cycle, a chaolic map, elc.

A thorough review of nonlinear models applied to Economics may be found in the

survey arficle by Boldrin and Woodford (1990) and in the excellent books by H. W, Lorenz

1T A periodic point p is hyperbelic it |(F7) (p)] # 1.
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(1989}, J. Barkley Rosser Jr. (1991} and Medio (1992). Some of their policy implications are
analized in Bullard and Buller (1993). Al these works show that, since the ploneering works by
Goodwin in the thities and after the second wave of nonfinear dynamic analysis led by
Benhabib, Day and Grandmonlt in Lhe early eighties, a significant development has laken place
in this field during the last years.

It s still an open question the exact relationship exisling between chance and
determinizm. Deterministic chaos appears as a bridge between pure siochaslicily and pure
determinism. This is only one of the various areas open to research in this promising fakd of
nomlinear dynamics.

What is owt of question is that nonlinearity provides a powerful ool lo develop a
therough analysis of far-from-equilibrium economic systems and of the laws of molion that
gowvern their evalution.

Undoubtedly, the next years will witness a nonlinear growth of the interast in the field

we have already proposed to christen as "economic nonequilibrium”® (see Beker, 1994),

APPEMNDIX
Let us analyze the relationship existing between the resulls obtained above for the
nonlinear demand case and the one in the linear case as far as slability is concemed.
Let us suppose, for the linear case, that the demand and supply funclions are the
following:
Dy=aP+b
S =AP+B
and that the price adjustmeni equation is
Pre =kiDy -3 =k
as in the main text,
In this case, stability holds if and only if
dei+kei
S0, insfabilify arises in the linear case in the following situations (assuming k=0 and
A=0):

1) If a<0 and kia - Ay< -2,
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2)iaz0 and
21)yazAor
2.2) kia- A)s-2

Let us now compare these resulls with the ones oblained in the main text for the
nomlingar demand function,

For this purpose, a will be the slope of tha tangent to the demand curve at the poini we
choose Lo consider.

In our supply curve the slope was represented by f, so f=A.

In the nonlinear example we have analized above, case 2.1) is excluded because the
supply curve slope always exceeds the demand curve one whenever the lalest is positive and
equilibrium exists at a positive price.

Case 2.2) is also ruled out because of the assumplion we have made lthal k = l.

Then, kia - A} = ; S s
S0, the only one case of instability which may hold in our example is 1). It will happen
whenever |a| 2 |A|, that is if he demand curve slope exceeds in absolute value the supply

curve ane, This colncides with the conclusion we have already arrived al for the nonlinear case:
instability appears on the negative sloped branch of the demand curve when % 2 3. This

condilion is analylicaily equivalent to the former one.

In faci, for any equilibium point FY, on the negalive sloping branch of the demand

curve it holds that a = a {1 - 2P},

being
aPf(1- P{) - P = 0
thus
fp-1-2
then
amsd-—
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o a
—3:3=>|-= =1
B

p

*|w

q.e.d.
This result is just a paricular case of the general rule stated by the Hadman-Grobman
thearem which says thal -under cerlain conditions- the jecal bahavior of a nonlinear system is

qualitatively similar to that of the linearized one (see Medio, 1902, p. 50).
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